New lower bounds of the minimum eigenvalue for the Fan product of several M-matrices

In this study, we generalize the definition of the Fan product of two M -matrices to any $ k $ M -matrices $ {{A}_{1}}, {{A}_{2}}, \cdots, {{A}_{k}} $ of order $ n $. We introduce two new inequalities for the lower bound of the minimum eigenvalue $ \tau \left({{A}_{1}}\star {{A}_{2}}\star \cdots \st...

Full description

Saved in:
Bibliographic Details
Published in:AIMS mathematics Vol. 8; no. 12; pp. 29073 - 29084
Main Author: Zhong, Qin
Format: Journal Article
Language:English
Published: AIMS Press 01-01-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, we generalize the definition of the Fan product of two M -matrices to any $ k $ M -matrices $ {{A}_{1}}, {{A}_{2}}, \cdots, {{A}_{k}} $ of order $ n $. We introduce two new inequalities for the lower bound of the minimum eigenvalue $ \tau \left({{A}_{1}}\star {{A}_{2}}\star \cdots \star {{A}_{k}} \right) $. These new lower bounds generalize the existing results. To validate the accuracy of our findings, we present examples in which our results outperform previous ones in certain cases.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.20231489