New lower bounds of the minimum eigenvalue for the Fan product of several M-matrices
In this study, we generalize the definition of the Fan product of two M -matrices to any $ k $ M -matrices $ {{A}_{1}}, {{A}_{2}}, \cdots, {{A}_{k}} $ of order $ n $. We introduce two new inequalities for the lower bound of the minimum eigenvalue $ \tau \left({{A}_{1}}\star {{A}_{2}}\star \cdots \st...
Saved in:
Published in: | AIMS mathematics Vol. 8; no. 12; pp. 29073 - 29084 |
---|---|
Main Author: | |
Format: | Journal Article |
Language: | English |
Published: |
AIMS Press
01-01-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, we generalize the definition of the Fan product of two M -matrices to any $ k $ M -matrices $ {{A}_{1}}, {{A}_{2}}, \cdots, {{A}_{k}} $ of order $ n $. We introduce two new inequalities for the lower bound of the minimum eigenvalue $ \tau \left({{A}_{1}}\star {{A}_{2}}\star \cdots \star {{A}_{k}} \right) $. These new lower bounds generalize the existing results. To validate the accuracy of our findings, we present examples in which our results outperform previous ones in certain cases. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.20231489 |