Hydrophobic Carbonate Coatings on Pure Biodegradable Mg by Immersion in Carbonated Water: Formation Mechanism

Mg is one of the few materials of choice for biodegradable implants, despite its rapid degradation when used without surface protection treatment. This study presents the effect of carbonation time on the formation of hydrophobic carbonate coatings grown on pure magnesium using a simple, green chemi...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences Vol. 12; no. 22; p. 11674
Main Authors: Popa, Monica, Anastasescu, Mihai, Gifu, Ioana Catalina, Calderon Moreno, Jose M.
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-11-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mg is one of the few materials of choice for biodegradable implants, despite its rapid degradation when used without surface protection treatment. This study presents the effect of carbonation time on the formation of hydrophobic carbonate coatings grown on pure magnesium using a simple, green chemical conversion method in carbonated water. The evolution of the coating with immersion time in carbonating solution was studied in order to ascertain the mechanistic of coating formation by Raman and EDS spectroscopy, XRD, SEM and AFM microscopy. Wettability was investigated by contact angle measurements. The formation mechanism of the hydrophobic coating involves the surface nucleation of carbonates mediated by the dissolution of the native corrosion product, brucite Mg(OH)2, surface conversion into hydroxycarbonates, surface calcite nucleation and growth by attachment of nanoparticles, leading to the lateral growth of a continuous carbonate coating layer of intertwined calcite microcrystals.
ISSN:2076-3417
2076-3417
DOI:10.3390/app122211674