Phase-resolved all-fiber reflection-based s-NSOM for on-chip characterization

We report on a phase-resolved, reflection-based, scattering-type near-field scanning optical microscope technique with a convenient all-fiber configuration. Exploiting the flexible positioning of the near-field probe, our technique renders a heterodyne detection for phase measurement and point-to-po...

Full description

Saved in:
Bibliographic Details
Published in:Optics express Vol. 30; no. 23; pp. 41118 - 41132
Main Authors: Sun, Yizhi, Yan, Xiaohong, Blaize, Sylvain, Bachelot, Renaud, Wei, Hong, Ding, Wei
Format: Journal Article
Language:English
Published: 07-11-2022
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report on a phase-resolved, reflection-based, scattering-type near-field scanning optical microscope technique with a convenient all-fiber configuration. Exploiting the flexible positioning of the near-field probe, our technique renders a heterodyne detection for phase measurement and point-to-point frequency-domain reflectometry for group index and loss measurement of waveguides on a chip. The important issue of mitigating the measurement errors due to environmental fluctuations along fiber-optic links has been addressed. We perform systematic measurements on different types of silicon waveguides which demonstrate the accuracy and precision of the technique. With a phase compensation approach on the basis of a common-path interferometer, the phase drift error is suppressed to ∼ 0.013°/s. In addition, characterizations of group index, group velocity dispersion, propagation loss, insertion loss, and return loss of component waveguides on a chip are all demonstrated. The measurement accuracy of the propagation loss of a ∼ 0.2 cm long nano-waveguide reaches ±1 dB/cm. Our convenient and versatile near-field characterization technique paves the way for in-detail study of complex photonic circuits on a chip.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.475192