An efficient hybrid approach for forecasting real-time stock market indices
The stock market’s volatility, noise, and information overload necessitate efficient prediction methods. Forecasting index prices in this environment is complex due to the non-linear and non-stationary nature of time series data generated from the stock market. Machine learning and deep learning hav...
Saved in:
Published in: | Journal of King Saud University. Computer and information sciences Vol. 36; no. 8; p. 102180 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier B.V
01-10-2024
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The stock market’s volatility, noise, and information overload necessitate efficient prediction methods. Forecasting index prices in this environment is complex due to the non-linear and non-stationary nature of time series data generated from the stock market. Machine learning and deep learning have emerged as powerful tools for identifying financial data patterns and generating predictions based on historical trends. However, updating these models in real-time is crucial for accurate predictions. Deep learning models require extensive computational resources and careful hyperparameter optimization, while incremental learning models struggle to balance stability and adaptability. This paper proposes a novel hybrid bidirectional-LSTM (H.BLSTM) model that combines incremental learning and deep learning techniques for real-time index price prediction, addressing these scalability and memory challenges. The method utilizes both univariate time series derived from historical index prices and multivariate time series incorporating technical indicators. Implementation within a real-time trading system demonstrates the method’s effectiveness in achieving more accurate price forecasts for major stock indices globally through extensive experimentation. The proposed model achieved an average mean absolute percentage error of 0.001 across nine stock indices, significantly outperforming traditional models. It has an average forecasting delay of 2 s, making it suitable for real-time trading applications. |
---|---|
ISSN: | 1319-1578 |
DOI: | 10.1016/j.jksuci.2024.102180 |