Evolution of Microstructure, Texture and Topography during Cold Rolling and Recrystallization of Ni–5at.%W Alloy Substrate for Coated Conductors
In this work, the effect of cold rolling and heat treatment upon the microstructure and texture of the surface layer and cross-section of Ni5W alloy substrate was analyzed via the EBSD technique. A typical copper deformation texture was shown by the cold-rolled Ni5W alloy substrate. The cube-oriente...
Saved in:
Published in: | Crystals (Basel) Vol. 9; no. 11; p. 604 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-11-2019
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, the effect of cold rolling and heat treatment upon the microstructure and texture of the surface layer and cross-section of Ni5W alloy substrate was analyzed via the EBSD technique. A typical copper deformation texture was shown by the cold-rolled Ni5W alloy substrate. The cube-oriented nuclei were attributed to the rolling direction–transverse direction (RD-TD) plane due to the presence of copper and S rolling textures. Typical large-shape cold-rolled microstructure was presented by the RD-ND surface in the cube-oriented area. During the recrystallization process, the cube-oriented grains did not have a nucleation quantity advantage, but they did have an obvious growth advantage compared with other orientation grains. They can form a strong cube texture by absorbing the random orientation and rolling orientation through the migration of large-angle grain boundaries. |
---|---|
ISSN: | 2073-4352 2073-4352 |
DOI: | 10.3390/cryst9110604 |