Electrical manipulation of a single electron spin in CMOS using a micromagnet and spin-valley coupling
For semiconductor spin qubits, complementary-metal-oxide-semiconductor (CMOS) technology is a promising candidate for reliable and scalable fabrication. Making the direct leap from academic fabrication to qubits fully fabricated by industrial CMOS standards is difficult without intermediate solution...
Saved in:
Published in: | npj quantum information Vol. 9; no. 1; pp. 107 - 7 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
23-10-2023
Nature Publishing Group Nature Portfolio |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For semiconductor spin qubits, complementary-metal-oxide-semiconductor (CMOS) technology is a promising candidate for reliable and scalable fabrication. Making the direct leap from academic fabrication to qubits fully fabricated by industrial CMOS standards is difficult without intermediate solutions. With a flexible back-end-of-line (BEOL), functionalities such as micromagnets or superconducting circuits can be added in a post-CMOS process to study the physics of these devices or achieve proofs-of-concept. Once the process is established, it can be incorporated in the foundry-compatible process flow. Here, we study a single electron spin qubit in a CMOS device with a micromagnet integrated in the flexible BEOL. We exploit the synthetic spin orbit coupling (SOC) to control the qubit via electric fields and we investigate the spin-valley physics in the presence of SOC where we show an enhancement of the Rabi frequency at the spin-valley hotspot. Finally, we probe the high frequency noise in the system using dynamical decoupling pulse sequences and demonstrate that charge noise dominates the qubit decoherence in this range. |
---|---|
ISSN: | 2056-6387 2056-6387 |
DOI: | 10.1038/s41534-023-00776-8 |