Developing a ridge estimator for the gamma regression model
The ridge regression model has been consistently demonstrated to be an attractive shrinkage method to reduce the effects of multicollinearity. The gamma regression model is a very popular model in the application when the response variable is positively skewed. However, it is known that multicolline...
Saved in:
Published in: | Journal of chemometrics Vol. 32; no. 10 |
---|---|
Main Author: | |
Format: | Journal Article |
Language: | English |
Published: |
Chichester
Wiley Subscription Services, Inc
01-10-2018
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The ridge regression model has been consistently demonstrated to be an attractive shrinkage method to reduce the effects of multicollinearity. The gamma regression model is a very popular model in the application when the response variable is positively skewed. However, it is known that multicollinearity negatively affects the variance of maximum likelihood estimator of the gamma regression coefficients. To address this problem, a gamma ridge regression model has been proposed. In this study, a new estimator is developed by proposing a modification of Jackknife estimator with gamma ridge regression model. Our Monte Carlo simulation results and the real data application suggest that the proposed estimator can bring significant improvement relative to other competitor estimators, in absolute bias and mean squared error.
This study deals with the problem of the presence of multicollinearity in regression modeling. The gamma regression model is a very popular model in the application when the response variable is positively skewed. In this study, a new estimator is developed by proposing a modification of Jackknife estimator with gamma ridge regression model. The simulation results and the real data application reveal that the proposed estimator can bring significant improvement relative to other competitor estimators, in absolute bias and mean squared error. |
---|---|
AbstractList | The ridge regression model has been consistently demonstrated to be an attractive shrinkage method to reduce the effects of multicollinearity. The gamma regression model is a very popular model in the application when the response variable is positively skewed. However, it is known that multicollinearity negatively affects the variance of maximum likelihood estimator of the gamma regression coefficients. To address this problem, a gamma ridge regression model has been proposed. In this study, a new estimator is developed by proposing a modification of Jackknife estimator with gamma ridge regression model. Our Monte Carlo simulation results and the real data application suggest that the proposed estimator can bring significant improvement relative to other competitor estimators, in absolute bias and mean squared error.
This study deals with the problem of the presence of multicollinearity in regression modeling. The gamma regression model is a very popular model in the application when the response variable is positively skewed. In this study, a new estimator is developed by proposing a modification of Jackknife estimator with gamma ridge regression model. The simulation results and the real data application reveal that the proposed estimator can bring significant improvement relative to other competitor estimators, in absolute bias and mean squared error. Abstract The ridge regression model has been consistently demonstrated to be an attractive shrinkage method to reduce the effects of multicollinearity. The gamma regression model is a very popular model in the application when the response variable is positively skewed. However, it is known that multicollinearity negatively affects the variance of maximum likelihood estimator of the gamma regression coefficients. To address this problem, a gamma ridge regression model has been proposed. In this study, a new estimator is developed by proposing a modification of Jackknife estimator with gamma ridge regression model. Our Monte Carlo simulation results and the real data application suggest that the proposed estimator can bring significant improvement relative to other competitor estimators, in absolute bias and mean squared error. This study deals with the problem of the presence of multicollinearity in regression modeling. The gamma regression model is a very popular model in the application when the response variable is positively skewed. In this study, a new estimator is developed by proposing a modification of Jackknife estimator with gamma ridge regression model. The simulation results and the real data application reveal that the proposed estimator can bring significant improvement relative to other competitor estimators, in absolute bias and mean squared error. The ridge regression model has been consistently demonstrated to be an attractive shrinkage method to reduce the effects of multicollinearity. The gamma regression model is a very popular model in the application when the response variable is positively skewed. However, it is known that multicollinearity negatively affects the variance of maximum likelihood estimator of the gamma regression coefficients. To address this problem, a gamma ridge regression model has been proposed. In this study, a new estimator is developed by proposing a modification of Jackknife estimator with gamma ridge regression model. Our Monte Carlo simulation results and the real data application suggest that the proposed estimator can bring significant improvement relative to other competitor estimators, in absolute bias and mean squared error. |
Author | Algamal, Zakariya Yahya |
Author_xml | – sequence: 1 givenname: Zakariya Yahya orcidid: 0000-0002-0229-7958 surname: Algamal fullname: Algamal, Zakariya Yahya email: zakariya.algamal@uomosul.edu.iq organization: University of Mosul |
BookMark | eNp1kE1Lw0AQhhepYFoFf0LAi5fUyeZrF09S6wdUvCh4W9ZkNqYk2bibKv33To1XD8MwvA8z77xzNuttj4ydx7CMAfhVid0ygSw9YkEMUkYxF28zFoAQeSQTkZywufdbANKSNGDXt_iFrR2avg516JqqxhD92HR6tC40VOMHhrXuOlKxduh9Y_uwsxW2p-zY6Nbj2V9fsNe79cvqIdo83z-ubjZRyelGJKTApCq44FhJDSbVhSzIQFIBzUaWOaeWFmmJusiFhDyT5t2IwkCpc7K8YBfT3sHZzx25U1u7cz2dVDzm9GsGMifqcqJKZ713aNTg6A23VzGoQzSKolGHaAiNJvS7aXH_L6dW66df_gcIKGVN |
CitedBy_id | crossref_primary_10_1080_03610918_2020_1775851 crossref_primary_10_3390_axioms12060526 crossref_primary_10_1002_cpe_7045 crossref_primary_10_1002_cpe_7441 crossref_primary_10_1080_00949655_2021_2020274 crossref_primary_10_1080_03610918_2019_1650181 crossref_primary_10_1080_03610918_2021_1884719 crossref_primary_10_1007_s40995_021_01133_0 crossref_primary_10_1080_03610918_2023_2179070 crossref_primary_10_1080_03610918_2022_2127769 crossref_primary_10_1080_03610918_2021_1874990 crossref_primary_10_1155_2024_6694880 crossref_primary_10_1080_00949655_2021_2005063 crossref_primary_10_1007_s40995_022_01354_x crossref_primary_10_1080_03610918_2019_1652319 crossref_primary_10_1080_03610918_2021_1950188 crossref_primary_10_1080_03610918_2021_1953073 crossref_primary_10_1080_00949655_2022_2032059 crossref_primary_10_1080_03610918_2023_2286436 crossref_primary_10_1080_00949655_2024_2305239 crossref_primary_10_1080_03610918_2018_1510525 crossref_primary_10_1007_s40995_019_00777_3 crossref_primary_10_1080_03610918_2020_1752720 crossref_primary_10_1080_03610918_2020_1797794 crossref_primary_10_1080_03610918_2022_2059088 crossref_primary_10_1080_03610926_2021_1970773 crossref_primary_10_1016_j_chemolab_2018_10_014 crossref_primary_10_1016_j_sciaf_2023_e01543 crossref_primary_10_1155_2021_5545356 crossref_primary_10_1002_cpe_6340 crossref_primary_10_1080_03610918_2021_2007401 crossref_primary_10_1080_03610918_2018_1508704 crossref_primary_10_1016_j_cam_2021_113819 crossref_primary_10_1080_03610918_2021_2011925 crossref_primary_10_1002_cem_3342 crossref_primary_10_1007_s11222_024_10433_5 crossref_primary_10_1080_03610918_2023_2220999 crossref_primary_10_1002_cem_3300 crossref_primary_10_1080_02331888_2020_1775597 crossref_primary_10_1080_03610918_2020_1722837 crossref_primary_10_1016_j_aej_2023_02_037 |
Cites_doi | 10.1017/CBO9780511755408 10.1080/00949655.2016.1169421 10.1214/aoms/1177729893 10.1080/02664763.2015.1125861 10.1007/s00362-010-0334-5 10.1080/03610918.2014.995815 10.1002/cem.2915 10.1007/s00362-016-0814-3 10.1080/03610928608829223 10.1080/03610926.2012.729640 10.1002/cem.2741 10.1081/SAC-120017499 10.1016/0167-7152(91)90176-R 10.1016/0167-9473(88)90048-5 10.1111/j.2517-6161.1976.tb01588.x 10.1080/03610927508827232 |
ContentType | Journal Article |
Copyright | 2018 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2018 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 7U5 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/cem.3054 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1099-128X |
EndPage | n/a |
ExternalDocumentID | 10_1002_cem_3054 CEM3054 |
Genre | article |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AQPKS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH5 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ UB1 W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WRJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAYXX CITATION 7SC 7U5 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2934-898e3d7282ed9a0f4a7970003d0d9af9c629af474cea76890659fbf87f0ca6383 |
IEDL.DBID | 33P |
ISSN | 0886-9383 |
IngestDate | Thu Oct 10 17:06:30 EDT 2024 Thu Aug 22 11:29:26 EDT 2024 Sat Aug 24 00:52:39 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2934-898e3d7282ed9a0f4a7970003d0d9af9c629af474cea76890659fbf87f0ca6383 |
ORCID | 0000-0002-0229-7958 |
PQID | 2120545096 |
PQPubID | 37374 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2120545096 crossref_primary_10_1002_cem_3054 wiley_primary_10_1002_cem_3054_CEM3054 |
PublicationCentury | 2000 |
PublicationDate | October 2018 2018-10-00 20181001 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: October 2018 |
PublicationDecade | 2010 |
PublicationPlace | Chichester |
PublicationPlace_xml | – name: Chichester |
PublicationTitle | Journal of chemometrics |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 5 1950; 21 1991; 11 1986; 13 1986; 15 1970; 12 2009 2008 2008; 3 2016; 57 2012; 53 2003; 32 2014; 43 2017; 31 2015; 29 1988; 6 1977; 19 2015; 43 2016; 86 2018 2017 2016 1976; 38 1975; 4 2016; 45 e_1_2_7_6_1 e_1_2_7_5_1 Uusipaikka E (e_1_2_7_11_1) 2009 e_1_2_7_8_1 e_1_2_7_7_1 Malehi AS (e_1_2_7_4_1) 2015; 5 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 Türkan S (e_1_2_7_14_1) 2017 e_1_2_7_15_1 e_1_2_7_13_1 e_1_2_7_26_1 Dunder E (e_1_2_7_3_1) 2016 Hoerl AE (e_1_2_7_9_1) 1970; 12 Singh B (e_1_2_7_12_1) 1986; 13 Yıldız N (e_1_2_7_19_1) 2017 e_1_2_7_25_1 Asar Y (e_1_2_7_28_1) 2018 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_21_1 Batah FSM (e_1_2_7_10_1) 2008; 3 Hinkley DV (e_1_2_7_20_1) 1977; 19 Asar Y (e_1_2_7_27_1) 2014; 43 Farebrother R (e_1_2_7_22_1) 1976; 38 |
References_xml | – year: 2009 – volume: 53 start-page: 265 issue: 2 year: 2012 end-page: 280 article-title: Efficiency of the modified jackknifed Liu‐type estimator publication-title: Stat Pap – start-page: 1 year: 2017 end-page: 21 article-title: A jackknifed estimators for the negative binomial regression model publication-title: Commun Stat‐Simul Comput – volume: 57 start-page: 911 issue: 4 year: 2016 end-page: 928 article-title: Liu estimation in generalized linear models: Application on gamma distributed response variable publication-title: Stat Pap – volume: 3 start-page: 111 year: 2008 end-page: 122 article-title: The efficiency of modefied jackknife and ridge type regression estimators—a comparison publication-title: Surv Math Appl – volume: 5 start-page: 1 year: 2015 end-page: 11 article-title: Statistical models for the analysis of skewed healthcare cost data: A simulation study publication-title: Heal Econ Rev – start-page: 0 year: 2017 end-page: 0 article-title: On the performance of the jackknifed Liu‐type estimator in linear regression model publication-title: Commun Stat Theory Methods – volume: 6 start-page: 177 issue: 2 year: 1988 end-page: 183 article-title: Applications of the jackknife procedure in ridge regression publication-title: Comput Stats Data Anal – volume: 43 start-page: 827 year: 2014 end-page: 841 article-title: Modified ridge regression parameters: a comparative Monte Carlo study publication-title: Hacettepe J Math Stat – volume: 21 start-page: 124 issue: 1 year: 1950 end-page: 127 article-title: Adjustment of an inverse matrix corresponding to a change in one element of a given matrix publication-title: Ann Math Stat – volume: 86 start-page: 3512 issue: 17 year: 2016 end-page: 3526 article-title: A derivation of prediction intervals for gamma regression publication-title: J Stat Comput Simul – volume: 4 start-page: 105 year: 1975 end-page: 123 article-title: Ridge regression: Some simulations publication-title: Commun Stat Theory Methods – start-page: 1 year: 2016 end-page: 9 article-title: Variable selection in gamma regression models via artificial bee colony algorithm publication-title: J Appl Stat – volume: 19 start-page: 285 year: 1977 end-page: 292 article-title: Jackknifing in unbalanced situations publication-title: Dent Tech – volume: 43 start-page: 5249 issue: 24 year: 2014 end-page: 5262 article-title: Jackknifing the ridge regression estimator: A revisit publication-title: Commun Stat‐Theory Methods – volume: 32 start-page: 419 issue: 2 year: 2003 end-page: 435 article-title: Performance of some new ridge regression estimators publication-title: Commun Stat Simul Comput – volume: 29 start-page: 547 issue: 10 year: 2015 end-page: 556 article-title: High‐dimensional QSAR prediction of anticancer potency of imidazo[4,5‐b] pyridine derivatives using adjusted adaptive LASSO publication-title: J Chemom – start-page: 23 year: 2018 end-page: 39 – volume: 12 start-page: 55 year: 1970 end-page: 67 article-title: Ridge regression: Biased estimation for nonorthogonal problems publication-title: Dent Tech – year: 2008 – volume: 45 start-page: 1094 issue: 3 year: 2016 end-page: 1103 article-title: New shrinkage parameters for the Liu‐type logistic estimators publication-title: Commun Stat Simul Comput – volume: 38 start-page: 248 year: 1976 end-page: 250 article-title: Further results on the mean square error of ridge regression publication-title: J R Stat Soc B Methodol – volume: 43 start-page: 1892 year: 2015 end-page: 1905 article-title: A new modified jackknifed estimator for the Poisson regression model publication-title: J Appl Stat – volume: 11 start-page: 49 issue: 1 year: 1991 end-page: 51 article-title: The efficiency of jack‐knifed and usual ridge type estimators: A comparison publication-title: Stat Probab Lett – volume: 31 issue: 10 year: 2017 article-title: A novel molecular descriptor selection method in QSAR classification model based on weighted penalized logistic regression publication-title: J Chemom – volume: 15 start-page: 1865 issue: 6 year: 1986 end-page: 1874 article-title: Improved deviance goodness of fit statistics for a gamma regression model publication-title: Commun Stat Theory Methods – volume: 13 start-page: 342 year: 1986 end-page: 346 article-title: An almost unbiased ridge estimator publication-title: Sankhyā: Indian J Stat, Series B – ident: e_1_2_7_2_1 doi: 10.1017/CBO9780511755408 – ident: e_1_2_7_6_1 doi: 10.1080/00949655.2016.1169421 – ident: e_1_2_7_21_1 doi: 10.1214/aoms/1177729893 – ident: e_1_2_7_18_1 doi: 10.1080/02664763.2015.1125861 – volume: 12 start-page: 55 year: 1970 ident: e_1_2_7_9_1 article-title: Ridge regression: Biased estimation for nonorthogonal problems publication-title: Dent Tech contributor: fullname: Hoerl AE – volume-title: Confidence intervals in generalized regression models year: 2009 ident: e_1_2_7_11_1 contributor: fullname: Uusipaikka E – ident: e_1_2_7_13_1 doi: 10.1007/s00362-010-0334-5 – start-page: 23 volume-title: Liu‐type negative binomial regression: A comparison of recent estimators and applications. Trends and Perspectives in Linear Statistical Inference year: 2018 ident: e_1_2_7_28_1 contributor: fullname: Asar Y – ident: e_1_2_7_7_1 doi: 10.1080/03610918.2014.995815 – ident: e_1_2_7_26_1 doi: 10.1002/cem.2915 – volume: 43 start-page: 827 year: 2014 ident: e_1_2_7_27_1 article-title: Modified ridge regression parameters: a comparative Monte Carlo study publication-title: Hacettepe J Math Stat contributor: fullname: Asar Y – ident: e_1_2_7_8_1 doi: 10.1007/s00362-016-0814-3 – volume: 19 start-page: 285 year: 1977 ident: e_1_2_7_20_1 article-title: Jackknifing in unbalanced situations publication-title: Dent Tech contributor: fullname: Hinkley DV – ident: e_1_2_7_5_1 doi: 10.1080/03610928608829223 – ident: e_1_2_7_16_1 doi: 10.1080/03610926.2012.729640 – start-page: 0 year: 2017 ident: e_1_2_7_19_1 article-title: On the performance of the jackknifed Liu‐type estimator in linear regression model publication-title: Commun Stat Theory Methods contributor: fullname: Yıldız N – volume: 13 start-page: 342 year: 1986 ident: e_1_2_7_12_1 article-title: An almost unbiased ridge estimator publication-title: Sankhyā: Indian J Stat, Series B contributor: fullname: Singh B – ident: e_1_2_7_25_1 doi: 10.1002/cem.2741 – ident: e_1_2_7_23_1 doi: 10.1081/SAC-120017499 – volume: 3 start-page: 111 year: 2008 ident: e_1_2_7_10_1 article-title: The efficiency of modefied jackknife and ridge type regression estimators—a comparison publication-title: Surv Math Appl contributor: fullname: Batah FSM – ident: e_1_2_7_15_1 doi: 10.1016/0167-7152(91)90176-R – volume: 5 start-page: 1 year: 2015 ident: e_1_2_7_4_1 article-title: Statistical models for the analysis of skewed healthcare cost data: A simulation study publication-title: Heal Econ Rev contributor: fullname: Malehi AS – ident: e_1_2_7_17_1 doi: 10.1016/0167-9473(88)90048-5 – start-page: 1 year: 2016 ident: e_1_2_7_3_1 article-title: Variable selection in gamma regression models via artificial bee colony algorithm publication-title: J Appl Stat contributor: fullname: Dunder E – volume: 38 start-page: 248 year: 1976 ident: e_1_2_7_22_1 article-title: Further results on the mean square error of ridge regression publication-title: J R Stat Soc B Methodol doi: 10.1111/j.2517-6161.1976.tb01588.x contributor: fullname: Farebrother R – start-page: 1 year: 2017 ident: e_1_2_7_14_1 article-title: A jackknifed estimators for the negative binomial regression model publication-title: Commun Stat‐Simul Comput contributor: fullname: Türkan S – ident: e_1_2_7_24_1 doi: 10.1080/03610927508827232 |
SSID | ssj0009934 |
Score | 2.4721563 |
Snippet | The ridge regression model has been consistently demonstrated to be an attractive shrinkage method to reduce the effects of multicollinearity. The gamma... Abstract The ridge regression model has been consistently demonstrated to be an attractive shrinkage method to reduce the effects of multicollinearity. The... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Computer simulation Economic models gamma regression model jackknife estimator Maximum likelihood estimators Monte Carlo simulation multicollinearity Regression coefficients Regression models ridge estimator Shrinkage |
Title | Developing a ridge estimator for the gamma regression model |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcem.3054 https://www.proquest.com/docview/2120545096 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50L3rxLa6uEkG8xc02oUn0JPtgL4qggreQJqmnVnHd_-8k3e7qQRA8hTZJCcNM55sk8w3ARaGZZ5mT1A9YSYUQgeKbnHLhks9hqoh7utNHef-iRuNIk3Pd5sI0_BDLDbdoGel_HQ3cFrP-ijTUheoKlTVSgUbSppi9wR9WfLs6HSijDeVUYxTW8s6yrN9O_OmJVvDyO0hNXmay_Z_17cDWAluS20YZdmEt1HuwMWxLuu3DzWiZIkUsSalaJLJsVDHyJghfCcJB8mqrCnvDa3NFtiapWs4BPE_GT8MpXVRPoA5duKBKq8C9xJAqeG1ZKazUMoZAnuFzqV2eYSOkcMFizKHjAWtZlEqWzFm0Sn4InfqtDkdAVM49wluuHOPCs6B9ENwP8KOIdlAVu3DeStK8NyQZpqFDzgyKwUQxdKHXitgszGRm0G9iV2Sg6cJlEuav881wfBfb478OPIFNBDcNd-2gB53Pj3k4hfWZn58lVfkCFVe-vg |
link.rule.ids | 315,783,787,1409,27936,27937,46067,46491 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_cfJgvfovVqRHEt7isCW3DnmQfTNyG4ATfQpeke2oV5_5_L-m66YMg-BTaNCUcd73fXXq_A7iZSWZYqGNq2iyjQghL8U5EudDe57Bk5nK6w-d48pr0-o4mp1PVwpT8EOuEm7MM_712Bu4S0q0Na6i2-R1qq6jBtoiEdFbJ-dOGcVf6I2W0oohKjMMq5lkWtqqVP33RBmB-h6nezwz2_rXDfdhdwUtyX-rDAWzZ4hAa3aqr2xF0eusqKZISX61FHNFG7oJvggiWICIk8zTPcdbOy79kC-Ib5hzDy6A_7Q7pqoEC1ejFBU1kYrmJMaqyRqYsE2ksYxcFGYbXmdRRiIOIhbYphh3SnbFmsyyJM6ZTNEx-AvXirbCnQJKIG0S4PNGMC8OsNFZw08aXIuBBbQzguhKlei95MlTJiBwqFINyYgigWclYrSxlodB14pQjoQng1kvz1_Wq2x-78eyvD15BYzgdj9ToYfJ4DjuIdUoq23YT6p8fS3sBtYVZXnq9-QItg8Lf |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD64CeqLd3E6NYL4Fs2a0Db6JLswUcdABd9Cl8ueWodz_9-TdN30QRB8Cm2aEg7n9Hxf0vMF4GIkmWGRTqhpMUeFEJbinZhyoUPOYenIr-n2n5PBW9rpepmcm6oWptSHWCy4-cgI32sf4BPjrpeiodrmV-isogarAlG4J16cD5eCuzLsKGMQxVQiDauEZ1l0XY38mYqW-PI7Sg1pprf1nwluw-YcXJK70ht2YMUWu7Ders5024PbzqJGimQk1GoRL7ORe-pNEL8SxINknOU59tpx-Y9sQcJxOfvw2uu-tPt0fnwC1ZjDBU1larlJkFNZIzPmRJbIxHMgw_DaSR1H2IhEaJsh6ZB-h9WNXJo4pjMMS34A9eK9sIdA0pgbxLc81YwLw6w0VnDTwpci3EFfbMB5ZUk1KVUyVKmHHCk0g_JmaECzMrGax8lUYeLELi9B04DLYMxfx6t298m3R3998AzWhp2eerwfPBzDBgKdUse21YT658fMnkBtamanwWu-ABSuwY4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+a+ridge+estimator+for+the+gamma+regression+model&rft.jtitle=Journal+of+chemometrics&rft.au=Algamal%2C+Zakariya+Yahya&rft.date=2018-10-01&rft.issn=0886-9383&rft.eissn=1099-128X&rft.volume=32&rft.issue=10&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcem.3054&rft.externalDBID=10.1002%252Fcem.3054&rft.externalDocID=CEM3054 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-9383&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-9383&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-9383&client=summon |