Developing a ridge estimator for the gamma regression model

The ridge regression model has been consistently demonstrated to be an attractive shrinkage method to reduce the effects of multicollinearity. The gamma regression model is a very popular model in the application when the response variable is positively skewed. However, it is known that multicolline...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemometrics Vol. 32; no. 10
Main Author: Algamal, Zakariya Yahya
Format: Journal Article
Language:English
Published: Chichester Wiley Subscription Services, Inc 01-10-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The ridge regression model has been consistently demonstrated to be an attractive shrinkage method to reduce the effects of multicollinearity. The gamma regression model is a very popular model in the application when the response variable is positively skewed. However, it is known that multicollinearity negatively affects the variance of maximum likelihood estimator of the gamma regression coefficients. To address this problem, a gamma ridge regression model has been proposed. In this study, a new estimator is developed by proposing a modification of Jackknife estimator with gamma ridge regression model. Our Monte Carlo simulation results and the real data application suggest that the proposed estimator can bring significant improvement relative to other competitor estimators, in absolute bias and mean squared error. This study deals with the problem of the presence of multicollinearity in regression modeling. The gamma regression model is a very popular model in the application when the response variable is positively skewed. In this study, a new estimator is developed by proposing a modification of Jackknife estimator with gamma ridge regression model. The simulation results and the real data application reveal that the proposed estimator can bring significant improvement relative to other competitor estimators, in absolute bias and mean squared error.
AbstractList The ridge regression model has been consistently demonstrated to be an attractive shrinkage method to reduce the effects of multicollinearity. The gamma regression model is a very popular model in the application when the response variable is positively skewed. However, it is known that multicollinearity negatively affects the variance of maximum likelihood estimator of the gamma regression coefficients. To address this problem, a gamma ridge regression model has been proposed. In this study, a new estimator is developed by proposing a modification of Jackknife estimator with gamma ridge regression model. Our Monte Carlo simulation results and the real data application suggest that the proposed estimator can bring significant improvement relative to other competitor estimators, in absolute bias and mean squared error. This study deals with the problem of the presence of multicollinearity in regression modeling. The gamma regression model is a very popular model in the application when the response variable is positively skewed. In this study, a new estimator is developed by proposing a modification of Jackknife estimator with gamma ridge regression model. The simulation results and the real data application reveal that the proposed estimator can bring significant improvement relative to other competitor estimators, in absolute bias and mean squared error.
Abstract The ridge regression model has been consistently demonstrated to be an attractive shrinkage method to reduce the effects of multicollinearity. The gamma regression model is a very popular model in the application when the response variable is positively skewed. However, it is known that multicollinearity negatively affects the variance of maximum likelihood estimator of the gamma regression coefficients. To address this problem, a gamma ridge regression model has been proposed. In this study, a new estimator is developed by proposing a modification of Jackknife estimator with gamma ridge regression model. Our Monte Carlo simulation results and the real data application suggest that the proposed estimator can bring significant improvement relative to other competitor estimators, in absolute bias and mean squared error. This study deals with the problem of the presence of multicollinearity in regression modeling. The gamma regression model is a very popular model in the application when the response variable is positively skewed. In this study, a new estimator is developed by proposing a modification of Jackknife estimator with gamma ridge regression model. The simulation results and the real data application reveal that the proposed estimator can bring significant improvement relative to other competitor estimators, in absolute bias and mean squared error.
The ridge regression model has been consistently demonstrated to be an attractive shrinkage method to reduce the effects of multicollinearity. The gamma regression model is a very popular model in the application when the response variable is positively skewed. However, it is known that multicollinearity negatively affects the variance of maximum likelihood estimator of the gamma regression coefficients. To address this problem, a gamma ridge regression model has been proposed. In this study, a new estimator is developed by proposing a modification of Jackknife estimator with gamma ridge regression model. Our Monte Carlo simulation results and the real data application suggest that the proposed estimator can bring significant improvement relative to other competitor estimators, in absolute bias and mean squared error.
Author Algamal, Zakariya Yahya
Author_xml – sequence: 1
  givenname: Zakariya Yahya
  orcidid: 0000-0002-0229-7958
  surname: Algamal
  fullname: Algamal, Zakariya Yahya
  email: zakariya.algamal@uomosul.edu.iq
  organization: University of Mosul
BookMark eNp1kE1Lw0AQhhepYFoFf0LAi5fUyeZrF09S6wdUvCh4W9ZkNqYk2bibKv33To1XD8MwvA8z77xzNuttj4ydx7CMAfhVid0ygSw9YkEMUkYxF28zFoAQeSQTkZywufdbANKSNGDXt_iFrR2avg516JqqxhD92HR6tC40VOMHhrXuOlKxduh9Y_uwsxW2p-zY6Nbj2V9fsNe79cvqIdo83z-ubjZRyelGJKTApCq44FhJDSbVhSzIQFIBzUaWOaeWFmmJusiFhDyT5t2IwkCpc7K8YBfT3sHZzx25U1u7cz2dVDzm9GsGMifqcqJKZ713aNTg6A23VzGoQzSKolGHaAiNJvS7aXH_L6dW66df_gcIKGVN
CitedBy_id crossref_primary_10_1080_03610918_2020_1775851
crossref_primary_10_3390_axioms12060526
crossref_primary_10_1002_cpe_7045
crossref_primary_10_1002_cpe_7441
crossref_primary_10_1080_00949655_2021_2020274
crossref_primary_10_1080_03610918_2019_1650181
crossref_primary_10_1080_03610918_2021_1884719
crossref_primary_10_1007_s40995_021_01133_0
crossref_primary_10_1080_03610918_2023_2179070
crossref_primary_10_1080_03610918_2022_2127769
crossref_primary_10_1080_03610918_2021_1874990
crossref_primary_10_1155_2024_6694880
crossref_primary_10_1080_00949655_2021_2005063
crossref_primary_10_1007_s40995_022_01354_x
crossref_primary_10_1080_03610918_2019_1652319
crossref_primary_10_1080_03610918_2021_1950188
crossref_primary_10_1080_03610918_2021_1953073
crossref_primary_10_1080_00949655_2022_2032059
crossref_primary_10_1080_03610918_2023_2286436
crossref_primary_10_1080_00949655_2024_2305239
crossref_primary_10_1080_03610918_2018_1510525
crossref_primary_10_1007_s40995_019_00777_3
crossref_primary_10_1080_03610918_2020_1752720
crossref_primary_10_1080_03610918_2020_1797794
crossref_primary_10_1080_03610918_2022_2059088
crossref_primary_10_1080_03610926_2021_1970773
crossref_primary_10_1016_j_chemolab_2018_10_014
crossref_primary_10_1016_j_sciaf_2023_e01543
crossref_primary_10_1155_2021_5545356
crossref_primary_10_1002_cpe_6340
crossref_primary_10_1080_03610918_2021_2007401
crossref_primary_10_1080_03610918_2018_1508704
crossref_primary_10_1016_j_cam_2021_113819
crossref_primary_10_1080_03610918_2021_2011925
crossref_primary_10_1002_cem_3342
crossref_primary_10_1007_s11222_024_10433_5
crossref_primary_10_1080_03610918_2023_2220999
crossref_primary_10_1002_cem_3300
crossref_primary_10_1080_02331888_2020_1775597
crossref_primary_10_1080_03610918_2020_1722837
crossref_primary_10_1016_j_aej_2023_02_037
Cites_doi 10.1017/CBO9780511755408
10.1080/00949655.2016.1169421
10.1214/aoms/1177729893
10.1080/02664763.2015.1125861
10.1007/s00362-010-0334-5
10.1080/03610918.2014.995815
10.1002/cem.2915
10.1007/s00362-016-0814-3
10.1080/03610928608829223
10.1080/03610926.2012.729640
10.1002/cem.2741
10.1081/SAC-120017499
10.1016/0167-7152(91)90176-R
10.1016/0167-9473(88)90048-5
10.1111/j.2517-6161.1976.tb01588.x
10.1080/03610927508827232
ContentType Journal Article
Copyright 2018 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2018 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7U5
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cem.3054
DatabaseName CrossRef
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1099-128X
EndPage n/a
ExternalDocumentID 10_1002_cem_3054
CEM3054
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AQPKS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH5
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
UB1
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WRJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
CITATION
7SC
7U5
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2934-898e3d7282ed9a0f4a7970003d0d9af9c629af474cea76890659fbf87f0ca6383
IEDL.DBID 33P
ISSN 0886-9383
IngestDate Thu Oct 10 17:06:30 EDT 2024
Thu Aug 22 11:29:26 EDT 2024
Sat Aug 24 00:52:39 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2934-898e3d7282ed9a0f4a7970003d0d9af9c629af474cea76890659fbf87f0ca6383
ORCID 0000-0002-0229-7958
PQID 2120545096
PQPubID 37374
PageCount 12
ParticipantIDs proquest_journals_2120545096
crossref_primary_10_1002_cem_3054
wiley_primary_10_1002_cem_3054_CEM3054
PublicationCentury 2000
PublicationDate October 2018
2018-10-00
20181001
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: October 2018
PublicationDecade 2010
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Journal of chemometrics
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 5
1950; 21
1991; 11
1986; 13
1986; 15
1970; 12
2009
2008
2008; 3
2016; 57
2012; 53
2003; 32
2014; 43
2017; 31
2015; 29
1988; 6
1977; 19
2015; 43
2016; 86
2018
2017
2016
1976; 38
1975; 4
2016; 45
e_1_2_7_6_1
e_1_2_7_5_1
Uusipaikka E (e_1_2_7_11_1) 2009
e_1_2_7_8_1
e_1_2_7_7_1
Malehi AS (e_1_2_7_4_1) 2015; 5
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
Türkan S (e_1_2_7_14_1) 2017
e_1_2_7_15_1
e_1_2_7_13_1
e_1_2_7_26_1
Dunder E (e_1_2_7_3_1) 2016
Hoerl AE (e_1_2_7_9_1) 1970; 12
Singh B (e_1_2_7_12_1) 1986; 13
Yıldız N (e_1_2_7_19_1) 2017
e_1_2_7_25_1
Asar Y (e_1_2_7_28_1) 2018
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_21_1
Batah FSM (e_1_2_7_10_1) 2008; 3
Hinkley DV (e_1_2_7_20_1) 1977; 19
Asar Y (e_1_2_7_27_1) 2014; 43
Farebrother R (e_1_2_7_22_1) 1976; 38
References_xml – year: 2009
– volume: 53
  start-page: 265
  issue: 2
  year: 2012
  end-page: 280
  article-title: Efficiency of the modified jackknifed Liu‐type estimator
  publication-title: Stat Pap
– start-page: 1
  year: 2017
  end-page: 21
  article-title: A jackknifed estimators for the negative binomial regression model
  publication-title: Commun Stat‐Simul Comput
– volume: 57
  start-page: 911
  issue: 4
  year: 2016
  end-page: 928
  article-title: Liu estimation in generalized linear models: Application on gamma distributed response variable
  publication-title: Stat Pap
– volume: 3
  start-page: 111
  year: 2008
  end-page: 122
  article-title: The efficiency of modefied jackknife and ridge type regression estimators—a comparison
  publication-title: Surv Math Appl
– volume: 5
  start-page: 1
  year: 2015
  end-page: 11
  article-title: Statistical models for the analysis of skewed healthcare cost data: A simulation study
  publication-title: Heal Econ Rev
– start-page: 0
  year: 2017
  end-page: 0
  article-title: On the performance of the jackknifed Liu‐type estimator in linear regression model
  publication-title: Commun Stat Theory Methods
– volume: 6
  start-page: 177
  issue: 2
  year: 1988
  end-page: 183
  article-title: Applications of the jackknife procedure in ridge regression
  publication-title: Comput Stats Data Anal
– volume: 43
  start-page: 827
  year: 2014
  end-page: 841
  article-title: Modified ridge regression parameters: a comparative Monte Carlo study
  publication-title: Hacettepe J Math Stat
– volume: 21
  start-page: 124
  issue: 1
  year: 1950
  end-page: 127
  article-title: Adjustment of an inverse matrix corresponding to a change in one element of a given matrix
  publication-title: Ann Math Stat
– volume: 86
  start-page: 3512
  issue: 17
  year: 2016
  end-page: 3526
  article-title: A derivation of prediction intervals for gamma regression
  publication-title: J Stat Comput Simul
– volume: 4
  start-page: 105
  year: 1975
  end-page: 123
  article-title: Ridge regression: Some simulations
  publication-title: Commun Stat Theory Methods
– start-page: 1
  year: 2016
  end-page: 9
  article-title: Variable selection in gamma regression models via artificial bee colony algorithm
  publication-title: J Appl Stat
– volume: 19
  start-page: 285
  year: 1977
  end-page: 292
  article-title: Jackknifing in unbalanced situations
  publication-title: Dent Tech
– volume: 43
  start-page: 5249
  issue: 24
  year: 2014
  end-page: 5262
  article-title: Jackknifing the ridge regression estimator: A revisit
  publication-title: Commun Stat‐Theory Methods
– volume: 32
  start-page: 419
  issue: 2
  year: 2003
  end-page: 435
  article-title: Performance of some new ridge regression estimators
  publication-title: Commun Stat Simul Comput
– volume: 29
  start-page: 547
  issue: 10
  year: 2015
  end-page: 556
  article-title: High‐dimensional QSAR prediction of anticancer potency of imidazo[4,5‐b] pyridine derivatives using adjusted adaptive LASSO
  publication-title: J Chemom
– start-page: 23
  year: 2018
  end-page: 39
– volume: 12
  start-page: 55
  year: 1970
  end-page: 67
  article-title: Ridge regression: Biased estimation for nonorthogonal problems
  publication-title: Dent Tech
– year: 2008
– volume: 45
  start-page: 1094
  issue: 3
  year: 2016
  end-page: 1103
  article-title: New shrinkage parameters for the Liu‐type logistic estimators
  publication-title: Commun Stat Simul Comput
– volume: 38
  start-page: 248
  year: 1976
  end-page: 250
  article-title: Further results on the mean square error of ridge regression
  publication-title: J R Stat Soc B Methodol
– volume: 43
  start-page: 1892
  year: 2015
  end-page: 1905
  article-title: A new modified jackknifed estimator for the Poisson regression model
  publication-title: J Appl Stat
– volume: 11
  start-page: 49
  issue: 1
  year: 1991
  end-page: 51
  article-title: The efficiency of jack‐knifed and usual ridge type estimators: A comparison
  publication-title: Stat Probab Lett
– volume: 31
  issue: 10
  year: 2017
  article-title: A novel molecular descriptor selection method in QSAR classification model based on weighted penalized logistic regression
  publication-title: J Chemom
– volume: 15
  start-page: 1865
  issue: 6
  year: 1986
  end-page: 1874
  article-title: Improved deviance goodness of fit statistics for a gamma regression model
  publication-title: Commun Stat Theory Methods
– volume: 13
  start-page: 342
  year: 1986
  end-page: 346
  article-title: An almost unbiased ridge estimator
  publication-title: Sankhyā: Indian J Stat, Series B
– ident: e_1_2_7_2_1
  doi: 10.1017/CBO9780511755408
– ident: e_1_2_7_6_1
  doi: 10.1080/00949655.2016.1169421
– ident: e_1_2_7_21_1
  doi: 10.1214/aoms/1177729893
– ident: e_1_2_7_18_1
  doi: 10.1080/02664763.2015.1125861
– volume: 12
  start-page: 55
  year: 1970
  ident: e_1_2_7_9_1
  article-title: Ridge regression: Biased estimation for nonorthogonal problems
  publication-title: Dent Tech
  contributor:
    fullname: Hoerl AE
– volume-title: Confidence intervals in generalized regression models
  year: 2009
  ident: e_1_2_7_11_1
  contributor:
    fullname: Uusipaikka E
– ident: e_1_2_7_13_1
  doi: 10.1007/s00362-010-0334-5
– start-page: 23
  volume-title: Liu‐type negative binomial regression: A comparison of recent estimators and applications. Trends and Perspectives in Linear Statistical Inference
  year: 2018
  ident: e_1_2_7_28_1
  contributor:
    fullname: Asar Y
– ident: e_1_2_7_7_1
  doi: 10.1080/03610918.2014.995815
– ident: e_1_2_7_26_1
  doi: 10.1002/cem.2915
– volume: 43
  start-page: 827
  year: 2014
  ident: e_1_2_7_27_1
  article-title: Modified ridge regression parameters: a comparative Monte Carlo study
  publication-title: Hacettepe J Math Stat
  contributor:
    fullname: Asar Y
– ident: e_1_2_7_8_1
  doi: 10.1007/s00362-016-0814-3
– volume: 19
  start-page: 285
  year: 1977
  ident: e_1_2_7_20_1
  article-title: Jackknifing in unbalanced situations
  publication-title: Dent Tech
  contributor:
    fullname: Hinkley DV
– ident: e_1_2_7_5_1
  doi: 10.1080/03610928608829223
– ident: e_1_2_7_16_1
  doi: 10.1080/03610926.2012.729640
– start-page: 0
  year: 2017
  ident: e_1_2_7_19_1
  article-title: On the performance of the jackknifed Liu‐type estimator in linear regression model
  publication-title: Commun Stat Theory Methods
  contributor:
    fullname: Yıldız N
– volume: 13
  start-page: 342
  year: 1986
  ident: e_1_2_7_12_1
  article-title: An almost unbiased ridge estimator
  publication-title: Sankhyā: Indian J Stat, Series B
  contributor:
    fullname: Singh B
– ident: e_1_2_7_25_1
  doi: 10.1002/cem.2741
– ident: e_1_2_7_23_1
  doi: 10.1081/SAC-120017499
– volume: 3
  start-page: 111
  year: 2008
  ident: e_1_2_7_10_1
  article-title: The efficiency of modefied jackknife and ridge type regression estimators—a comparison
  publication-title: Surv Math Appl
  contributor:
    fullname: Batah FSM
– ident: e_1_2_7_15_1
  doi: 10.1016/0167-7152(91)90176-R
– volume: 5
  start-page: 1
  year: 2015
  ident: e_1_2_7_4_1
  article-title: Statistical models for the analysis of skewed healthcare cost data: A simulation study
  publication-title: Heal Econ Rev
  contributor:
    fullname: Malehi AS
– ident: e_1_2_7_17_1
  doi: 10.1016/0167-9473(88)90048-5
– start-page: 1
  year: 2016
  ident: e_1_2_7_3_1
  article-title: Variable selection in gamma regression models via artificial bee colony algorithm
  publication-title: J Appl Stat
  contributor:
    fullname: Dunder E
– volume: 38
  start-page: 248
  year: 1976
  ident: e_1_2_7_22_1
  article-title: Further results on the mean square error of ridge regression
  publication-title: J R Stat Soc B Methodol
  doi: 10.1111/j.2517-6161.1976.tb01588.x
  contributor:
    fullname: Farebrother R
– start-page: 1
  year: 2017
  ident: e_1_2_7_14_1
  article-title: A jackknifed estimators for the negative binomial regression model
  publication-title: Commun Stat‐Simul Comput
  contributor:
    fullname: Türkan S
– ident: e_1_2_7_24_1
  doi: 10.1080/03610927508827232
SSID ssj0009934
Score 2.4721563
Snippet The ridge regression model has been consistently demonstrated to be an attractive shrinkage method to reduce the effects of multicollinearity. The gamma...
Abstract The ridge regression model has been consistently demonstrated to be an attractive shrinkage method to reduce the effects of multicollinearity. The...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Computer simulation
Economic models
gamma regression model
jackknife estimator
Maximum likelihood estimators
Monte Carlo simulation
multicollinearity
Regression coefficients
Regression models
ridge estimator
Shrinkage
Title Developing a ridge estimator for the gamma regression model
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcem.3054
https://www.proquest.com/docview/2120545096
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50L3rxLa6uEkG8xc02oUn0JPtgL4qggreQJqmnVnHd_-8k3e7qQRA8hTZJCcNM55sk8w3ARaGZZ5mT1A9YSYUQgeKbnHLhks9hqoh7utNHef-iRuNIk3Pd5sI0_BDLDbdoGel_HQ3cFrP-ijTUheoKlTVSgUbSppi9wR9WfLs6HSijDeVUYxTW8s6yrN9O_OmJVvDyO0hNXmay_Z_17cDWAluS20YZdmEt1HuwMWxLuu3DzWiZIkUsSalaJLJsVDHyJghfCcJB8mqrCnvDa3NFtiapWs4BPE_GT8MpXVRPoA5duKBKq8C9xJAqeG1ZKazUMoZAnuFzqV2eYSOkcMFizKHjAWtZlEqWzFm0Sn4InfqtDkdAVM49wluuHOPCs6B9ENwP8KOIdlAVu3DeStK8NyQZpqFDzgyKwUQxdKHXitgszGRm0G9iV2Sg6cJlEuav881wfBfb478OPIFNBDcNd-2gB53Pj3k4hfWZn58lVfkCFVe-vg
link.rule.ids 315,783,787,1409,27936,27937,46067,46491
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_cfJgvfovVqRHEt7isCW3DnmQfTNyG4ATfQpeke2oV5_5_L-m66YMg-BTaNCUcd73fXXq_A7iZSWZYqGNq2iyjQghL8U5EudDe57Bk5nK6w-d48pr0-o4mp1PVwpT8EOuEm7MM_712Bu4S0q0Na6i2-R1qq6jBtoiEdFbJ-dOGcVf6I2W0oohKjMMq5lkWtqqVP33RBmB-h6nezwz2_rXDfdhdwUtyX-rDAWzZ4hAa3aqr2xF0eusqKZISX61FHNFG7oJvggiWICIk8zTPcdbOy79kC-Ib5hzDy6A_7Q7pqoEC1ejFBU1kYrmJMaqyRqYsE2ksYxcFGYbXmdRRiIOIhbYphh3SnbFmsyyJM6ZTNEx-AvXirbCnQJKIG0S4PNGMC8OsNFZw08aXIuBBbQzguhKlei95MlTJiBwqFINyYgigWclYrSxlodB14pQjoQng1kvz1_Wq2x-78eyvD15BYzgdj9ToYfJ4DjuIdUoq23YT6p8fS3sBtYVZXnq9-QItg8Lf
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD64CeqLd3E6NYL4Fs2a0Db6JLswUcdABd9Cl8ueWodz_9-TdN30QRB8Cm2aEg7n9Hxf0vMF4GIkmWGRTqhpMUeFEJbinZhyoUPOYenIr-n2n5PBW9rpepmcm6oWptSHWCy4-cgI32sf4BPjrpeiodrmV-isogarAlG4J16cD5eCuzLsKGMQxVQiDauEZ1l0XY38mYqW-PI7Sg1pprf1nwluw-YcXJK70ht2YMUWu7Ders5024PbzqJGimQk1GoRL7ORe-pNEL8SxINknOU59tpx-Y9sQcJxOfvw2uu-tPt0fnwC1ZjDBU1larlJkFNZIzPmRJbIxHMgw_DaSR1H2IhEaJsh6ZB-h9WNXJo4pjMMS34A9eK9sIdA0pgbxLc81YwLw6w0VnDTwpci3EFfbMB5ZUk1KVUyVKmHHCk0g_JmaECzMrGax8lUYeLELi9B04DLYMxfx6t298m3R3998AzWhp2eerwfPBzDBgKdUse21YT658fMnkBtamanwWu-ABSuwY4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+a+ridge+estimator+for+the+gamma+regression+model&rft.jtitle=Journal+of+chemometrics&rft.au=Algamal%2C+Zakariya+Yahya&rft.date=2018-10-01&rft.issn=0886-9383&rft.eissn=1099-128X&rft.volume=32&rft.issue=10&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcem.3054&rft.externalDBID=10.1002%252Fcem.3054&rft.externalDocID=CEM3054
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-9383&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-9383&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-9383&client=summon