In vitro results with special plastics for biodegradable endoureteral stents
Internal ureteral stents are widely used in urologic practice for temporary urinary diversion, but all double-J catheters to date exhibit the same disadvantage; that is, they have to be removed endoscopically, necessitating further intervention. We tested different materials (designated G100X-15xLB...
Saved in:
Published in: | Journal of endourology Vol. 12; no. 5; p. 451 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
United States
01-10-1998
|
Subjects: | |
Online Access: | Get more information |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Internal ureteral stents are widely used in urologic practice for temporary urinary diversion, but all double-J catheters to date exhibit the same disadvantage; that is, they have to be removed endoscopically, necessitating further intervention. We tested different materials (designated G100X-15xLB and G100X-20xLB) to develop a biodegradable (biodissolvable) endoureteral stent that can be held in place without functional loss yet could be dissolved by changing the environment. The principle of the biochemical background is based on the physiological milieu of the urine. The plastics tested are stable in acidic and dissolve in alkaline conditions. In a first step, specimens of two polymers were placed in artificial urine of different pH over a period of 60 days and monitored for integrity (solution trial). In a second step, artificial urine was set in motion (744 mL/24 hours) an infusion pump (Volumed microVP 5000; Fresenius AG, Bad Homburg vdH, Germany) through an infusion set in which a 30-cm piece of the materials to test had been placed (ureter model). Below the inserted specimen, the lumen of the infusion tube was minimized to make obstruction by fragments more possible. In the solution trial, all specimens remained stable under physiologic conditions (pH 5.2) over a period of at least 30 days. The specimens dissolved completely when the pH was adjusted to an alkaline one (pH 7.9). In the ureter model, with pH values of 7.9, all specimens were decomposed after 20 hours, and no occlusion of the model occurred. Using acidic artificial urine, the specimens remained stable with a smooth consistent surface. The dissolution was not a standard chemical one; the materials broke into microscopically small pieces, with fragments of G100X-20xLB being smaller than those of G100X-15xLB. Our first in vitro results show that the tested materials are suitable for further development of biodissolvable endoureteral stents, dissolution of which can be steered by changing the urinary pH. |
---|---|
ISSN: | 0892-7790 |
DOI: | 10.1089/end.1998.12.451 |