Exploiting Partial FDD Reciprocity for Beam-Based Pilot Precoding and CSI Feedback in Deep Learning

Massive MIMO systems can achieve high spectrum and energy efficiency in downlink (DL) based on accurate estimate of channel state information (CSI). Existing works have developed learning-based DL CSI estimation that lowers uplink feedback overhead. One often overlooked problem is the limited number...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on wireless communications Vol. 23; no. 2; pp. 1474 - 1488
Main Authors: Lin, Yu-Chien, Lee, Ta-Sung, Ding, Zhi
Format: Journal Article
Language:English
Published: New York IEEE 01-02-2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Massive MIMO systems can achieve high spectrum and energy efficiency in downlink (DL) based on accurate estimate of channel state information (CSI). Existing works have developed learning-based DL CSI estimation that lowers uplink feedback overhead. One often overlooked problem is the limited number of DL pilots available for CSI estimation. One proposed solution leverages temporal CSI coherence by utilizing past CSI estimates and only sending channel state information-reference symbols (CSI-RS) for partial arrays to preserve CSI recovery performance. Exploiting CSI correlations, FDD channel reciprocity is helpful to base stations with direct access to uplink CSI. In this work, we propose a new learning-based feedback architecture and a reconfigurable CSI-RS placement scheme to reduce DL CSI training overhead and to improve encoding efficiency of CSI feedback. Our results demonstrate superior performance in both indoor and outdoor scenarios by the proposed framework for CSI recovery at substantial reduction of computation power and storage requirements at UEs.
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2023.3289929