Role of brain serotonergic pathways and hypothalamus in regulation of renin secretion

To investigate the role of brain serotonergic neurons in the regulation of renin secretion, we measured changes in plasma renin activity (PRA), and, in some instances, plasma renin concentration (PRC), plasma angiotensinogen, and plasma adrenocorticotropic hormone (ACTH) in rats with lesions of the...

Full description

Saved in:
Bibliographic Details
Published in:The American journal of physiology Vol. 253; no. 1 Pt 2; pp. R179 - R185
Main Authors: Gotoh, E, Murakami, K, Bahnson, T D, Ganong, W F
Format: Journal Article
Language:English
Published: United States 01-07-1987
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To investigate the role of brain serotonergic neurons in the regulation of renin secretion, we measured changes in plasma renin activity (PRA), and, in some instances, plasma renin concentration (PRC), plasma angiotensinogen, and plasma adrenocorticotropic hormone (ACTH) in rats with lesions of the dorsal raphe nucleus and lesions of the paraventricular nuclei, dorsomedial nuclei, and ventromedial nuclei of the hypothalamus. We also investigated the effects of p-chloroamphetamine (PCA), immobilization, head-up tilt, and a low-sodium diet in the rats with dorsal raphe, paraventricular, and dorsomedial lesions. Lesions of the dorsal raphe nucleus abolished the increase in PRA produced by PCA but had no effect on the increase produced by immobilization, head-up tilt, and a low-sodium diet. Paraventricular lesions, which abolish the increase in plasma ACTH produced by PCA, immobilization, and head-up tilt, decreased plasma angiotensinogen. The paraventricular lesions abolished the PRA and the PRC responses to PCA and the PRA but not PRC response to immobilization, head-up tilt, and a low-sodium diet. The ventromedial lesions abolished the PRA and PRC responses to PCA and did not reduce plasma angiotensinogen. The data suggest that paraventricular lesions depress angiotensinogen production by the liver and that the paraventricular and ventromedial nuclei are part of the pathway by which serotonergic discharges increase renin secretion. They also suggest that the serotonergic pathway does mediate the increases in renin secretion produced by immobilization, head-up tilt, and a low-sodium diet.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-9513
DOI:10.1152/ajpregu.1987.253.1.r179