Collector Engineered Bidirectional Insulated Gate Bipolar Transistor With Low Loss

The collector engineered bidirectional insulated gate bipolar transistor (CEB-IGBT) with p-buffer and semi-superjunction (Semi-SJ) is proposed. The structural modification at collector side provides support to reverse breakdown voltage (<inline-formula> <tex-math notation="LaTeX"&...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices Vol. 69; no. 3; pp. 1604 - 1607
Main Authors: Vaidya, Mahesh, Naugarhiya, Alok, Verma, Shrish, Mishra, Guru Prasad
Format: Journal Article
Language:English
Published: New York IEEE 01-03-2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The collector engineered bidirectional insulated gate bipolar transistor (CEB-IGBT) with p-buffer and semi-superjunction (Semi-SJ) is proposed. The structural modification at collector side provides support to reverse breakdown voltage (<inline-formula> <tex-math notation="LaTeX">\text {BV}_{R} </tex-math></inline-formula>) in two ways. First, the p-buffer layer allows the device to deplete completely and eliminates premature breakdown effects. Second, the Semi-SJ region introduces an electric field component in the <inline-formula> <tex-math notation="LaTeX">{x} </tex-math></inline-formula>-direction (<inline-formula> <tex-math notation="LaTeX">{E}_{X} </tex-math></inline-formula>) in order to further improve the <inline-formula> <tex-math notation="LaTeX">\text {BV}_{R} </tex-math></inline-formula>. The overall increased electric field, which is a resultant of <inline-formula> <tex-math notation="LaTeX">{E}_{X} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{E}_{Y} </tex-math></inline-formula>, improves <inline-formula> <tex-math notation="LaTeX">\text {BV}_{R} </tex-math></inline-formula> by 53.83% compared to nonpunchthrough IGBT (NPT-IGBT). The efficient potential distribution in the drift region provides support to forward breakdown (<inline-formula> <tex-math notation="LaTeX">\text {BV}_{F} </tex-math></inline-formula>) as well. The n-layer below p-body acts as a field stop (FS) layer, which reduces the leakage current during the OFF-state condition. The p-buffer, which injects higher minority charges along the drift side and n-layer with charge storage effect collectively, provides conductivity modulation in the epitaxial region in order to increase current handling capability. This high collector current density leads to reduce <inline-formula> <tex-math notation="LaTeX">{V}_{ \mathrm{\scriptscriptstyle ON}} </tex-math></inline-formula> by 14.5% compared to NPT-IGBT. Furthermore, the charge coupling effect of Semi-SJ region enables the proposed device to turn-off quickly with higher pillar doping and reduces turn-off loss (<inline-formula> <tex-math notation="LaTeX">{E}_{ \mathrm{\scriptscriptstyle OFF}} </tex-math></inline-formula>) in comparison with NPT-IGBT.
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2022.3141989