Subdomain Adaptation Transfer Learning Network for Fault Diagnosis of Roller Bearings
Due to the data distribution discrepancy, fault diagnosis models, trained with labeled data in one scene, likely fails in classifying by unlabeled data acquired from the other scenes. Transfer learning is capable to generalize successful application trained in one scene to the fault diagnosis in the...
Saved in:
Published in: | IEEE transactions on industrial electronics (1982) Vol. 69; no. 8; pp. 8430 - 8439 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
01-08-2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Due to the data distribution discrepancy, fault diagnosis models, trained with labeled data in one scene, likely fails in classifying by unlabeled data acquired from the other scenes. Transfer learning is capable to generalize successful application trained in one scene to the fault diagnosis in the other scenes. However, the existing transfer methods do not pay much attention to reduce adaptively marginal and conditional distribution biases, and also ignore the degree of contribution between both biases and among network layers, which limit classification performance and generalization in reality. To overcome these weaknesses, we establish a new fault diagnosis model, called subdomain adaptation transfer learning network (SATLN). First, two convolutional building blocks were stacked to extract transferable features from raw data. Then, the pseudo label learning is amended to construct target subdomain of each class. Furthermore, a subdomain adaptation is combined with domain adaptation to reduce both marginal and conditional distribution biases simultaneously. Finally, a dynamic weight term is applied for adaptive adjustment of the contributions from both discrepancies and each network layers. The SATLN method is tested with six transfer tasks. The results demonstrate the effectiveness and superiority of the SATLN in the cross-domain fault diagnosis field. |
---|---|
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2021.3108726 |