HetConv: Heterogeneous Kernel-Based Convolutions for Deep CNNs

We present a novel deep learning architecture in which the convolution operation leverages heterogeneous kernels. The proposed HetConv (Heterogeneous Kernel-Based Convolution) reduces the computation (FLOPs) and the number of parameters as compared to standard convolution operation while still maint...

Full description

Saved in:
Bibliographic Details
Published in:2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) pp. 4830 - 4839
Main Authors: Singh, Pravendra, Verma, Vinay Kumar, Rai, Piyush, Namboodiri, Vinay P.
Format: Conference Proceeding
Language:English
Published: IEEE 01-06-2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a novel deep learning architecture in which the convolution operation leverages heterogeneous kernels. The proposed HetConv (Heterogeneous Kernel-Based Convolution) reduces the computation (FLOPs) and the number of parameters as compared to standard convolution operation while still maintaining representational efficiency. To show the effectiveness of our proposed convolution, we present extensive experimental results on the standard convolutional neural network (CNN) architectures such as VGG and ResNet. We find that after replacing the standard convolutional filters in these architectures with our proposed HetConv filters, we achieve 3X to 8X FLOPs based improvement in speed while still maintaining (and sometimes improving) the accuracy. We also compare our proposed convolutions with group/depth wise convolutions and show that it achieves more FLOPs reduction with significantly higher accuracy.
ISSN:2575-7075
DOI:10.1109/CVPR.2019.00497