Breast Cancer Detection using Crow Search Optimization based Intuitionistic Fuzzy Clustering with Neighborhood Attraction
Objective: Generally, medical images contain lots of noise that may lead to uncertainty in diagnosing the abnormalities. Computer aided diagnosis systems offer a support to the radiologists in identifying the disease affected area. In mammographic images, some normal tissues may appear to be similar...
Saved in:
Published in: | Asian Pacific journal of cancer prevention : APJCP Vol. 20; no. 1; pp. 157 - 165 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Thailand
West Asia Organization for Cancer Prevention
01-01-2019
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Objective: Generally, medical images contain lots of noise that may lead to uncertainty in diagnosing the
abnormalities. Computer aided diagnosis systems offer a support to the radiologists in identifying the disease affected
area. In mammographic images, some normal tissues may appear to be similar to masses and it is tedious to differentiate
them. Therefore, this paper presents a novel framework for the detection of mammographic masses that leads to
early diagnosis of breast cancer. Methods: This work proposes a Crow search optimization based Intuitionistic fuzzy
clustering approach with neighborhood attraction (CrSA-IFCM-NA) for identifying the region of interest. First order
moments were extracted from preprocessed images. These features were given as input to the Intuitionistic fuzzy
clustering algorithm. Instead of randomly selecting the initial centroids, crow search optimization technique is applied
to choose the best initial centroid and the masses are separated. Experiments are conducted over the images taken from
the Mammographic Image Analysis Society (mini-MIAS) database. Results: CrSA-IFCM-NA effectively separated
the masses from mammogram images and proved to have good results in terms of cluster validity indices indicating
the clear segmentation of the regions. Conclusion: The experimental results show that the accuracy of the proposed
method proves to be encouraging for detection of masses. Thus, it provides a better assistance to the radiologists in
diagnosing breast cancer at an early stage. |
---|---|
ISSN: | 1513-7368 2476-762X |
DOI: | 10.31557/APJCP.2019.20.1.157 |