Automatized End Mill Wear Inspection Using a Novel Illumination Unit and Convolutional Neural Network

Ensuring cutting tools are in optimal condition is essential for achieving peak machining performance, given their direct impact on both workpiece quality and process efficiency. However, accurately assessing wear on end mills, especially those with complex geometries, pose a significant challenge d...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 12; pp. 124282 - 124297
Main Authors: Bilal, Muhenad, Podishetti, Ranadheer, Koval, Leonid, Gaafar, Mahmoud A., Grossmann, Daniel, Bregulla, Markus
Format: Journal Article
Language:English
Published: Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ensuring cutting tools are in optimal condition is essential for achieving peak machining performance, given their direct impact on both workpiece quality and process efficiency. However, accurately assessing wear on end mills, especially those with complex geometries, pose a significant challenge due to their reflective surfaces and varied wear patterns. Presented here is a novel method that addresses this challenge by employing a customized illumination unit in conjunction with a convolutional neural network (CNN) for end mill wear analysis. This innovative approach involves utilizing the specially designed illumination unit to capture high-quality images, enabling precise examination of material wear on helically shaped end mills. Notably, this method is tailored to illuminate reflective surfaces and represents a pioneering application in the realm of wear testing.We validate the viability of this approach by employing CNN-based models to segment wear on complex-shaped end mills coated with titanium carbonitride (TiCN) and titanium nitride (TiN). We achieved remarkable mean Intersection over Union (mIoU) results in wear detection on a test dataset: 0.99 for tool segmentation, 0.78 for abnormal wear, and 0.71 for normal wear segmentation.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2024.3454692