A Medium- and Long-Term Residential Load Forecasting Method Based on Discrete Cosine Transform-FEDformer

Accurate and reliable medium- and long-term load forecasting is crucial for the rational planning and operation of power systems. However, existing methods often struggle to accurately extract and capture long-term dependencies in load data, leading to poor predictive accuracy. Therefore, this paper...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) Vol. 17; no. 15; p. 3676
Main Authors: Li, Dengao, Liu, Qi, Feng, Ding, Chen, Zhichao
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-08-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Accurate and reliable medium- and long-term load forecasting is crucial for the rational planning and operation of power systems. However, existing methods often struggle to accurately extract and capture long-term dependencies in load data, leading to poor predictive accuracy. Therefore, this paper proposes a medium- and long-term residential load forecasting method based on FEDformer, aiming to capture long-term temporal dependencies of load data in the frequency domain while considering factors such as electricity prices and temperature, ultimately improving the accuracy of medium- and long-term load forecasting. The proposed model employs Discrete Cosine Transform (DCT) for frequency domain transformation of time-series data to address the Gibbs phenomenon caused by the use of Discrete Fourier Transform (DFT) in FEDformer. Additionally, causal convolution and attention mechanisms are applied in the frequency domain to enhance the model’s capability to capture long-term dependencies. The model is evaluated using real-world load data from power systems, and experimental results demonstrate that the proposed model effectively learns the temporal and nonlinear characteristics of load data. Compared to other baseline models, DCTformer improves prediction accuracy by 37.5% in terms of MSE, 26.9% in terms of MAE, and 26.24% in terms of RMSE.
ISSN:1996-1073
1996-1073
DOI:10.3390/en17153676