Trustworthy Federated Learning: A Comprehensive Review, Architecture, Key Challenges, and Future Research Prospects
Federated Learning (FL) emerged as a significant advancement in the field of Artificial Intelligence (AI), enabling collaborative model training across distributed devices while maintaining data privacy. As the importance of FL and its application in various areas increased, addressing trustworthine...
Saved in:
Published in: | IEEE open journal of the Communications Society Vol. 5; pp. 4920 - 4998 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Federated Learning (FL) emerged as a significant advancement in the field of Artificial Intelligence (AI), enabling collaborative model training across distributed devices while maintaining data privacy. As the importance of FL and its application in various areas increased, addressing trustworthiness issues in its various aspects became crucial. In this survey, we provided a comprehensive overview of the state-of-the-art research on Trustworthy FL, exploring existing solutions and key foundations relevant to Trustworthiness in FL. There has been significant growth in the literature on trustworthy centralized Machine Learning (ML) and Deep Learning (DL). However, there is still a need for more focused efforts toward identifying trustworthiness pillars and evaluation metrics in FL. In this paper, we proposed a taxonomy encompassing five main classifications for Trustworthy FL, including Interpretability and Explainability, Transparency, Privacy and Robustness, Fairness, and Accountability. Each category represents a dimension of trust and is further broken down into different sub-categories. Moreover, we addressed trustworthiness in a Decentralized FL (DFL) setting. Communication efficiency is essential for ensuring Trustworthy FL. This paper also highlights the significance of communication efficiency within various Trustworthy FL pillars and investigates existing research on communication-efficient techniques across these pillars. Our survey comprehensively addresses trustworthiness challenges across all aspects within the Trustworthy FL settings. We also proposed a comprehensive architecture for Trustworthy FL, detailing the fundamental principles underlying the concept, and provided an in-depth analysis of trust assessment mechanisms. In conclusion, we identified key research challenges related to every aspect of Trustworthy FL and suggested future research directions. This comprehensive survey served as a valuable resource for researchers and practitioners working on the development and implementation of Trustworthy FL systems, contributing to a more secure and reliable AI landscape. |
---|---|
ISSN: | 2644-125X 2644-125X |
DOI: | 10.1109/OJCOMS.2024.3438264 |