Data integration with uncertainty
This paper reports our first set of results on managing uncertainty in data integration. We posit that data-integration systems need to handle uncertainty at three levels and do so in a principled fashion. First, the semantic mappings between the data sources and the mediated schema may be approxima...
Saved in:
Published in: | The VLDB journal Vol. 18; no. 2; pp. 469 - 500 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Berlin/Heidelberg
Springer-Verlag
01-04-2009
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper reports our first set of results on managing uncertainty in data integration. We posit that data-integration systems need to handle uncertainty at three levels and do so in a principled fashion. First, the semantic mappings between the data sources and the mediated schema may be approximate because there may be too many of them to be created and maintained or because in some domains (e.g., bioinformatics) it is not clear what the mappings should be. Second, the data from the sources may be extracted using information extraction techniques and so may yield erroneous data. Third, queries to the system may be posed with keywords rather than in a structured form. As a first step to building such a system, we introduce the concept of probabilistic schema mappings and analyze their formal foundations. We show that there are two possible semantics for such mappings:
by-table
semantics assumes that there exists a correct mapping but we do not know what it is;
by-tuple
semantics assumes that the correct mapping may depend on the particular tuple in the source data. We present the query complexity and algorithms for answering queries in the presence of probabilistic schema mappings, and we describe an algorithm for efficiently computing the top-
k
answers to queries in such a setting. Finally, we consider using probabilistic mappings in the scenario of data exchange. |
---|---|
ISSN: | 1066-8888 0949-877X |
DOI: | 10.1007/s00778-008-0119-9 |