Singularities of maximal surfaces
We show that the singularities of spacelike maximal surfaces in Lorentz–Minkowski 3-space generically consist of cuspidal edges, swallowtails and cuspidal cross caps. The same result holds for spacelike mean curvature one surfaces in de Sitter 3-space. To prove these, we shall give a simple criterio...
Saved in:
Published in: | Mathematische Zeitschrift Vol. 259; no. 4; pp. 827 - 848 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Berlin/Heidelberg
Springer-Verlag
01-08-2008
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We show that the singularities of spacelike maximal surfaces in Lorentz–Minkowski 3-space generically consist of cuspidal edges, swallowtails and cuspidal cross caps. The same result holds for spacelike mean curvature one surfaces in de Sitter 3-space. To prove these, we shall give a simple criterion for a given singular point on a surface to be a cuspidal cross cap. |
---|---|
ISSN: | 0025-5874 1432-1823 |
DOI: | 10.1007/s00209-007-0250-0 |