Singularities of maximal surfaces

We show that the singularities of spacelike maximal surfaces in Lorentz–Minkowski 3-space generically consist of cuspidal edges, swallowtails and cuspidal cross caps. The same result holds for spacelike mean curvature one surfaces in de Sitter 3-space. To prove these, we shall give a simple criterio...

Full description

Saved in:
Bibliographic Details
Published in:Mathematische Zeitschrift Vol. 259; no. 4; pp. 827 - 848
Main Authors: Fujimori, Shoichi, Saji, Kentaro, Umehara, Masaaki, Yamada, Kotaro
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer-Verlag 01-08-2008
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We show that the singularities of spacelike maximal surfaces in Lorentz–Minkowski 3-space generically consist of cuspidal edges, swallowtails and cuspidal cross caps. The same result holds for spacelike mean curvature one surfaces in de Sitter 3-space. To prove these, we shall give a simple criterion for a given singular point on a surface to be a cuspidal cross cap.
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-007-0250-0