Asymptotic analysis of the sojourn time of a batch in a M [X]/M/1 processor sharing queue

In this article, we exploit recent results for the Laplace transform of the sojourn time Ω of an entire batch in the M [ X ] / M / 1 processor sharing queue in order to derive the asymptotic behavior of the distribution function of Ω, namely the behavior of ℙ(Ω > x) when x tends to infinity. Spec...

Full description

Saved in:
Bibliographic Details
Published in:Stochastic models Vol. 40; no. 4; pp. 659 - 684
Main Authors: Guillemin, Fabrice, Simonian, Alain, Nasri, Ridha, Rodriguez, Veronica Quintuna
Format: Journal Article
Language:English
Published: Philadelphia Taylor & Francis 01-10-2024
Taylor & Francis Ltd
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this article, we exploit recent results for the Laplace transform of the sojourn time Ω of an entire batch in the M [ X ] / M / 1 processor sharing queue in order to derive the asymptotic behavior of the distribution function of Ω, namely the behavior of ℙ(Ω > x) when x tends to infinity. Specifically, we show that, up to a multiplying factor, ℙ(Ω > x) has the same order of magnitude as ℙ(ω > x) for large x, where ω is the sojourn time of an arbitrary job in the system. From a practical point of view, this means that if a system has to be dimensioned to guarantee the processing time for jobs, then the system can also guarantee processing times for entire batches by introducing a marginal amount of processing capacity.
ISSN:1532-6349
1532-4214
DOI:10.1080/15326349.2024.2317210