Controlled Transition Metal Nucleated Growth of Carbon Nanotubes by Molten Electrolysis of CO2
The electrolysis of CO2 in molten carbonate has been introduced as an alternative mechanism to synthesize carbon nanomaterials inexpensively at high yield. Until recently, CO2 was thought to be unreactive, making its removal a challenge. CO2 is the main cause of anthropogenic global warming and its...
Saved in:
Published in: | Catalysts Vol. 12; no. 2; p. 137 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
MDPI AG
01-01-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The electrolysis of CO2 in molten carbonate has been introduced as an alternative mechanism to synthesize carbon nanomaterials inexpensively at high yield. Until recently, CO2 was thought to be unreactive, making its removal a challenge. CO2 is the main cause of anthropogenic global warming and its utilization and transformation into a stable, valuable material provides an incentivized pathway to mitigate climate change. This study focuses on controlled electrochemical conditions in molten lithium carbonate to split CO2 absorbed from the atmosphere into carbon nanotubes (CNTs), and into various macroscopic assemblies of CNTs, which may be useful for nano-filtration. Different CNT morphologies were prepared electrochemically by variation of the anode and cathode composition and architecture, variation of the electrolyte composition pre-electrolysis processing, and variation of the current application and current density. Individual CNT morphologies’ structures and the CNT molten carbonate growth mechanisms are explored using SEM (scanning electron microscopy), TEM (transmission electron micrsocopy), HAADF (high angle annular dark field), EDX (energy dispersive xray), X-ray diffraction), and Raman methods. The principle commercial technology for CNT production had been chemical vapor deposition, which is an order of magnitude more expensive, generally requires metallo-organics, rather than CO2 as reactants, and can be highly energy and CO2 emission intensive (carries a high carbon positive, rather than negative, footprint). |
---|---|
ISSN: | 2073-4344 |
DOI: | 10.3390/catal12020137 |