Extracellular ATP activates coordinated Na+, Pi, and Ca2+ transport in cardiac myocytes

Activation of an ATP receptor has previously been shown to induce cytosolic [Ca2+] transients in rat ventricular myocytes. A slower but larger [Ca2+] increase which can cause cell hypercontraction follows the transient when extracellular Pi is increased. This second phase of the [Ca2+] response is s...

Full description

Saved in:
Bibliographic Details
Published in:The American journal of physiology Vol. 260; no. 6 Pt 1; pp. C1182 - C1190
Main Authors: De Young, M B, Scarpa, A
Format: Journal Article
Language:English
Published: United States 01-06-1991
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Activation of an ATP receptor has previously been shown to induce cytosolic [Ca2+] transients in rat ventricular myocytes. A slower but larger [Ca2+] increase which can cause cell hypercontraction follows the transient when extracellular Pi is increased. This second phase of the [Ca2+] response is stimulated by ATP or adenosine 5'-(gamma-thio)triphosphate in a medium containing 11.2 mM Pi, but not by high concentrations of 2-methylthio-ATP, which stimulate only the initial [Ca2+] transient. Replacing medium Na+ with N-methyl-D-glucamine suppresses this Pi-dependent [Ca2+] increase following ATP addition, suggesting a causal relationship between Na+ transport and Ca2+ influx. Blocking voltage-sensitive Na+ channels, Na(+)-H+ exchange, or Na(+)-K(+)-Cl- cotransport did not reduce ATP-induced cell hypercontraction in 11.2 mM Pi medium, suggesting that these transporters are not involved. ATP stimulation of Na(+)-Pi cotransport was investigated with isotopic methods. The results were consistent with the hypothesis that extracellular ATP stimulates Na(+)-Pi cotransport, which activates Na(+)-Ca2+ exchange. A novel Pi-dependent ATP receptor-effector system has been demonstrated in cardiac cells, and it may have significant effects on cellular transport, contractility, and bioenergetics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-9513
DOI:10.1152/ajpcell.1991.260.6.C1182