Experimentally Induced Convulsive Seizures Are Modulated in Part by Zinc Ions through the Pharmacoresistant Cav2.3 Calcium Channel
BACKGROUND/AIMSStill in 1999 the first hints were published for the pharmacoresistant Cav2.3 calcium channel to be involved in the generation of epileptic seizures, as transcripts of alpha1E (Cav2.3) and alpha1G (Cav3.1) are changed in the brain of genetic absence epilepsy rats from Strasbourg (GAER...
Saved in:
Published in: | Cellular physiology and biochemistry Vol. 54; no. 2; pp. 180 - 194 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Cell Physiol Biochem Press GmbH & Co KG
19-02-2020
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | BACKGROUND/AIMSStill in 1999 the first hints were published for the pharmacoresistant Cav2.3 calcium channel to be involved in the generation of epileptic seizures, as transcripts of alpha1E (Cav2.3) and alpha1G (Cav3.1) are changed in the brain of genetic absence epilepsy rats from Strasbourg (GAERS). Consecutively, the seizure susceptibility of mice lacking Cav2.3 was analyzed in great detail by using 4-aminopyridine, pentylene-tetrazol, N-methyl-D-aspartate and kainic acid to induce experimentally convulsive seizures. Further, γ-hydroxybutyrolactone was used for the induction of non-convulsive absence seizures. For all substances tested, Cav2.3-competent mice differed from their knockout counterparts in the sense that for convulsive seizures the deletion of the pharmacoresistant channel was beneficial for the outcome during experimentally induced seizures [1]. The antiepileptic drug lamotrigine reduces seizure activity in Cav2.3-competent but increases it in Cav2.3-deficient mice. In vivo, Cav2.3 must be under tight control by endogenous trace metal cations (Zn2+ and Cu2+). The dyshomeostasis of either of them, especially of Cu2+, may alter the regulation of Cav2.3 severely and its activity for Ca2+ conductance, and thus may change hippocampal and neocortical signaling to hypo- or hyperexcitation. METHODSTo investigate by telemetric EEG recordings the mechanism of generating hyperexcitation by kainate, mice were tested for their sensitivity of changes in neuronal (intracerebroventricular) concentrations of the trace metal cation Zn2+. As the blood-brain barrier limits the distribution of bioavailable Zn2+ or Cu2+ into the brain, we administered micromolar Zn2+ ions intracerebroventricularly in the presence of 1 mM histidine as carrier and compared the effects on behavior and EEG activity in both genotypes. RESULTSKainate seizures are more severe in Cav2.3-competent mice than in KO mice and histidine lessens seizure severity in competent but not in Cav2.3-deficient mice. Surprisingly, Zn2+ plus histidine resembles the kainate only control with more seizure severity in Cav2.3-competent than in deficient mice. CONCLUSIONCav2.3 represents one important Zn2+-sensitive target, which is useful for modulating convulsive seizures. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1015-8987 1421-9778 1015-8987 |
DOI: | 10.33594/000000213 |