Characteristics of photosynthetic carbon metabolism of spikelets in rice
In lemmas and paleae of rice, the amount of pyruvate, Pi dikinase (PPDK) protein increased dramatically 6 d after anthesis and this change was consistent with that in the activity of PPDK. Since lemmas and paleae at this stage also showed high activities of the other marker enzymes of C4 pathway inc...
Saved in:
Published in: | Photosynthesis research Vol. 52; no. 2; pp. 75 - 82 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Dordrecht
Springer Nature B.V
01-05-1997
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In lemmas and paleae of rice, the amount of pyruvate, Pi dikinase (PPDK) protein increased dramatically 6 d after anthesis and this change was consistent with that in the activity of PPDK. Since lemmas and paleae at this stage also showed high activities of the other marker enzymes of C4 pathway including phosphot enolpyruvate carboxylase (Imaizumi et al. (1990) Plant Cell Physiol 31: 835-843), photosynthetic carbon metabolism with lemmas at this stage were characterized. In a 14C pulse-12C chase study by photosynthetic CO2 fixation, about 35% and 25% of 14C fixed in lemmas were incorporated initially into 3-phosphoglycerate (3-PGA) and C4 acids, respectively. This suggests that lemmas participate mainly in C3-type photosynthetic metabolism, but that lemmas may also participate in the metabolism of C4 acids to some extent. To clarify this possibility, large amounts of 14C-labeled C4 acids were synthesized in vivo by a light-enhanced dark CO2 fixation (LED) method and the fate of 14C in C4 acids in the light was investigated. The percentage distribution of 14C in C-4 position of malate was about 90% and 83% after 10 s of photosynthetic 14CO2 fixation and 110 s of LED, respectively. Some of the 14C incorporated into C4 acids was transferred into 3-PGA and sugar phosphates. The possibility of direct fixation of CO2 by phosphot enolpyruvate carboxylase and metabolic pathway of CO2 released by decarboxylation of malate produced were discussed.[PUBLICATION ABSTRACT] |
---|---|
Bibliography: | F61 1998004711 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0166-8595 1573-5079 |
DOI: | 10.1023/A:1005887931498 |