Alternation of wet and dry sides during partial rootzone drying irrigation enhances leaf ethylene evolution
•Partial rootzone drying and re-watering cause spatial changes in root water uptake.•Soil drying increased both root ABA and ACC accumulation.•Re-watering increased xylem / leaf ACC concentration and foliar ethylene evolution.•Re-watering increased leaf water use efficiency by transiently closing th...
Saved in:
Published in: | Environmental and experimental botany Vol. 176; p. 104095 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier B.V
01-08-2020
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | •Partial rootzone drying and re-watering cause spatial changes in root water uptake.•Soil drying increased both root ABA and ACC accumulation.•Re-watering increased xylem / leaf ACC concentration and foliar ethylene evolution.•Re-watering increased leaf water use efficiency by transiently closing the stomata.•Stomatal conductance was best explained by leaf xylem ABA concentration.
Soil drying increases endogenous ABA and ACC concentrations in planta, but how these compounds interact to regulate stomatal responses to soil drying and re-watering is still unclear. To determine the temporal dynamics and physiological significance of root, xylem and leaf ABA and ACC concentrations in response to deficit irrigation (DI) or partial rootzone drying (PRD-F) and re-watering, these variables were measured in plants exposed to similar whole pot soil water contents. Both DI and PRD-F plants received only a fraction of the irrigation supplied to well-watered (WW) plants, either to all (DI) or part (PRD-F) of the rootzone of plants grown in split-pots. Both DI and PRD-F induced partial stomatal closure, increased root ABA and ACC accumulation consistent with local soil water content, but did not affect xylem or leaf concentrations of these compounds compared to WW plants. Two hours after re-watering all (DI-RW) or part of the rootzone (PRD-A) to the same soil water content, stomatal conductance returned to WW values or further decreased respectively. Re-watering the whole rootzone had no effect on xylem and leaf ABA and ACC concentrations, while re-watering the dry side of the pot in PRD plants had no effect on xylem and leaf ABA concentrations but increased xylem and leaf ACC concentrations and leaf ethylene evolution. Leaf water potential was similar between all irrigation treatments, with stomatal conductance declining as xylem ABA concentrations and leaf ACC concentrations increased. Prior to re-watering PRD plants, accounting for the spatial differences in soil water uptake best explained variation in xylem ACC concentration suggesting root-to-shoot ACC signalling, but this model did not account for variation in xylem ACC concentration after re-watering the dry side of PRD plants. Thus local (foliar) and long-distance (root-to-shoot) variation in ACC status both seem important in regulating the temporal dynamics of foliar ethylene evolution in plants exposed to PRD. |
---|---|
ISSN: | 0098-8472 1873-7307 |
DOI: | 10.1016/j.envexpbot.2020.104095 |