Energy Efficiency Enhanced Landing Strategy for Manned eVTOLs Using L1 Adaptive Control
A new landing strategy is presented for manned electric vertical takeoff and landing (eVTOL) vehicles, using a roll maneuver to obtain a trajectory in the horizontal plane. This strategy rejects the altitude surging in the landing process, which is the fatal drawback of the conventional jumping stra...
Saved in:
Published in: | Symmetry (Basel) Vol. 13; no. 11; p. 2125 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-11-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A new landing strategy is presented for manned electric vertical takeoff and landing (eVTOL) vehicles, using a roll maneuver to obtain a trajectory in the horizontal plane. This strategy rejects the altitude surging in the landing process, which is the fatal drawback of the conventional jumping strategy. The strategy leads to a smoother transition from the wing-borne mode to the thrust-borne mode, and has a higher energy efficiency, meaning a better flight experience and higher economic performance. To employ the strategy, a five-stage maneuver is designed, using the lateral maneuver instead of longitudinal climbing. Additionally, a control system based on L1 adaptive control theory is designed to assist manned driving or execute flight missions independently, consisting of the guidance logic, stability augmentation system and flight management unit. The strategy is verified with the ET120 platform, by Monte Carlo simulation for robustness and safety performance, and an experiment was performed to compare the benefits with conventional landing strategies. The results show that the performance of the control system is robust enough to reduce perturbation by at least 20% in all modeling parameters, and ensures consistent dynamic characteristics between different flight modes. Additionally, the strategy successfully avoids climbing during the landing process with a smooth trajectory, and reduces the energy consumed for landing by 64%. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym13112125 |