A NOTE ON NON-AUTONOMOUS IMPLICIT INTEGRAL EQUATIONS WITH DISCONTINUOUS RIGHT-HAND SIDE

Let I := [0, 1], f : I × [0, σ] → R, g : I × I → [0, +∞[ and h : I× ] 0, +∞ [ → R. In this note we prove an existence result for solutions u ∈ Ls(I) of the integral equation $\mathrm{h}(\mathrm{t},\mathrm{u}(\mathrm{t}\left)\right)=\mathrm{f}(\mathrm{t},{\int }_{\mathrm{I}}\mathrm{g}(\mathrm{t},\mat...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of integral equations and applications Vol. 19; no. 4; pp. 391 - 403
Main Authors: ANELLO, GIOVANNI, CUBIOTTI, PAOLO
Format: Journal Article
Language:English
Published: The Rocky Mountain Mathematics Consortium 01-12-2007
Rocky Mountain Mathematics Consortium
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let I := [0, 1], f : I × [0, σ] → R, g : I × I → [0, +∞[ and h : I× ] 0, +∞ [ → R. In this note we prove an existence result for solutions u ∈ Ls(I) of the integral equation $\mathrm{h}(\mathrm{t},\mathrm{u}(\mathrm{t}\left)\right)=\mathrm{f}(\mathrm{t},{\int }_{\mathrm{I}}\mathrm{g}(\mathrm{t},\mathrm{z}\left)\mathrm{u}\right(\mathrm{z} \left) \ \mathrm{d}\mathrm{z}\right) \ \mathrm{f}\mathrm{o}\mathrm{r} \ \mathrm{a}\mathrm{.}\mathrm{a}\mathrm{.} \ \mathrm{t}\in \mathrm{I}$ for a.a. t ∈ I where, in particular, the continuity of f with respect to the second variable is not assumed. Our result is a partial extension of a previous result of the same authors [1], where the function h was not allowed to depend explicitly on t.
ISSN:0897-3962
1938-2626
DOI:10.1216/jiea/1192628615