Quinoxaline derivatives as cathode for aqueous zinc battery

Functional groups adjacent to the redox active center would have an uncompromising effect on the diffusion kinetics of the charge carriers. They expedite the diffusion process by extensive H-bonding, charge delocalization, and functional group polarization by tautomerism or resonance which would hav...

Full description

Saved in:
Bibliographic Details
Published in:Journal of solid state electrochemistry Vol. 28; no. 2; pp. 419 - 431
Main Authors: Chola, Noufal Merukan, Nagarale, Rajaram K.
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01-02-2024
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Functional groups adjacent to the redox active center would have an uncompromising effect on the diffusion kinetics of the charge carriers. They expedite the diffusion process by extensive H-bonding, charge delocalization, and functional group polarization by tautomerism or resonance which would have long held influence on the electrochemical performance of the material. Herein, we introduced a ketonic functional group adjacent to the quinoxaline redox center which accelerates the diffusion of the charge carriers. Quinoxaline nuclei with free rotating phenyl rings (DAB) exhibited a specific capacitance of 156.4 mAhg −1 at 50 mAg −1 which was found drastically decreased due to the excessive dissolution of the material as well as the uncontrolled ring flipping of the phenyl rings. By introducing a ketone functional group and stagnant phenyl rings with a fused ring system the specific capacitance was found to be improved to a considerable extent. The quinoxaline redox center with a fused ring system and symmetrically placed ketone functional groups (TKQ) exhibited a specific capacitance of 286.7 mAhg −1 at 50 mAg −1 and remained 224.8 mAhg −1 after prolonged 1000 cycles, with 95% coulombic efficiency and 79.4% retention in the discharge capacity. The study suggests that smart molecular engineering is necessary for excellent rate performance, rate reversibility, coulombic efficiency, and capacity retention. Graphical abstract
AbstractList Functional groups adjacent to the redox active center would have an uncompromising effect on the diffusion kinetics of the charge carriers. They expedite the diffusion process by extensive H-bonding, charge delocalization, and functional group polarization by tautomerism or resonance which would have long held influence on the electrochemical performance of the material. Herein, we introduced a ketonic functional group adjacent to the quinoxaline redox center which accelerates the diffusion of the charge carriers. Quinoxaline nuclei with free rotating phenyl rings (DAB) exhibited a specific capacitance of 156.4 mAhg−1 at 50 mAg−1 which was found drastically decreased due to the excessive dissolution of the material as well as the uncontrolled ring flipping of the phenyl rings. By introducing a ketone functional group and stagnant phenyl rings with a fused ring system the specific capacitance was found to be improved to a considerable extent. The quinoxaline redox center with a fused ring system and symmetrically placed ketone functional groups (TKQ) exhibited a specific capacitance of 286.7 mAhg−1 at 50 mAg−1 and remained 224.8 mAhg−1 after prolonged 1000 cycles, with 95% coulombic efficiency and 79.4% retention in the discharge capacity. The study suggests that smart molecular engineering is necessary for excellent rate performance, rate reversibility, coulombic efficiency, and capacity retention.
Functional groups adjacent to the redox active center would have an uncompromising effect on the diffusion kinetics of the charge carriers. They expedite the diffusion process by extensive H-bonding, charge delocalization, and functional group polarization by tautomerism or resonance which would have long held influence on the electrochemical performance of the material. Herein, we introduced a ketonic functional group adjacent to the quinoxaline redox center which accelerates the diffusion of the charge carriers. Quinoxaline nuclei with free rotating phenyl rings (DAB) exhibited a specific capacitance of 156.4 mAhg −1 at 50 mAg −1 which was found drastically decreased due to the excessive dissolution of the material as well as the uncontrolled ring flipping of the phenyl rings. By introducing a ketone functional group and stagnant phenyl rings with a fused ring system the specific capacitance was found to be improved to a considerable extent. The quinoxaline redox center with a fused ring system and symmetrically placed ketone functional groups (TKQ) exhibited a specific capacitance of 286.7 mAhg −1 at 50 mAg −1 and remained 224.8 mAhg −1 after prolonged 1000 cycles, with 95% coulombic efficiency and 79.4% retention in the discharge capacity. The study suggests that smart molecular engineering is necessary for excellent rate performance, rate reversibility, coulombic efficiency, and capacity retention. Graphical abstract
Author Chola, Noufal Merukan
Nagarale, Rajaram K.
Author_xml – sequence: 1
  givenname: Noufal Merukan
  orcidid: 0000-0002-2255-2872
  surname: Chola
  fullname: Chola, Noufal Merukan
  organization: Electro Membrane Processes Lab, Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Academy of Scientific and Innovative Research (AcSIR)
– sequence: 2
  givenname: Rajaram K.
  orcidid: 0000-0002-9742-8104
  surname: Nagarale
  fullname: Nagarale, Rajaram K.
  email: rknagarale@csmcri.res.in
  organization: Electro Membrane Processes Lab, Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Academy of Scientific and Innovative Research (AcSIR)
BookMark eNp9UE1LAzEUDFLBtvoHPAU8R1-y2SSLJylahYIIeg7ZbFa31KQmu8X6641dwZuH98nMvMfM0MQH7xA6p3BJAeRVyhkUAVYQKIWqCDtCU8qLPEqhJoeeEcWVOkGzlNYAVAoKU3T9NHQ-fJpN5x1uXOx2pu92LmGTsDX9W2gcbkPE5mNwYUj4q_MW16bvXdyfouPWbJI7-61z9HJ3-7y4J6vH5cPiZkUsk9ATWxV1fq5RVJaupDlMXdWyprZwvBVMQCtrMHkDTZU3wJWRgpfWmrLloirm6GLU3caQ30i9Xoch-nxSs4qBoDzDM4qNKBtDStG1ehu7dxP3moL-MUmPJulskj6YpFkmFSMpZbB_dfFP-h_WN4QZa3w
Cites_doi 10.1149/1945-7111/ab9cc9
10.1149/1945-7111/ac275a
10.1039/D1CC03938E
10.1149/2.0301805jes
10.1021/acsnano.6b05566
10.1021/jacs.7b09176
10.1021/acsenergylett.0c02604
10.1021/cr941181o
10.1021/acsaem.8b01851
10.1039/C9TA03219C
10.1021/acs.chemrev.9b00482
10.33961/jecst.2021.00836
10.1039/C9NR05748J
10.1039/C4TA03366C
10.1038/s41524-018-0064-0
10.1002/anie.201400032
10.1021/jacs.1c11335
10.1149/1945-7111/ac64c9
10.1038/am.2016.82
10.1002/elps.201900230
10.1039/C8TA04906H
10.1039/D0TA09404H
10.1002/celc.201701004
10.1039/C8TA11230D
10.1039/D2MA00063F
10.1021/acs.jpcc.6b07558
10.1016/j.jpowsour.2020.228401
10.3390/ma13040942
10.1039/C6CS00173D
10.1021/jacs.2c00154
10.1039/C9TA10113F
10.1002/cphc.202001025
10.1002/smll.201702551
10.1021/acssuschemeng.1c04481
10.1149/2.0581504jes
10.1039/D0CC05344A
10.1039/C8SE00205C
10.1021/acsami.9b09802
10.1039/C8SC02990C
10.1038/s41467-021-24701-9
10.1039/C9SC06143F
10.1039/C5TA02380G
10.1021/jacs.2c02346
10.1016/j.chempr.2018.08.014
10.1016/j.est.2021.102689
10.1038/s41467-018-05248-8
10.1016/j.cej.2021.129171
10.1149/MA2022-02121mtgabs
10.1021/acs.jpcc.6b04263
10.1002/aenm.202101490
10.1002/aenm.201701272
10.1039/C4CP01572J
10.1021/acs.chemmater.8b01317
10.1016/j.joule.2018.07.008
10.1039/C9TA05252F
10.1021/jacs.2c01381
10.1021/acs.chemrev.6b00070
10.1149/2.0451608jes
10.1038/s41586-021-03399-1
10.1021/acsami.6b04277
10.1021/acs.jpcc.0c07751
10.1002/anie.201808886
10.1002/cssc.201901795
10.1002/cssc.201901545
10.1039/D1TA05405H
10.1038/s41598-021-00712-w
10.1039/D2NJ03495F
10.1149/1945-7111/ac4b85
10.1016/j.jpowsour.2020.227788
10.1002/cssc.201901011
10.1002/celc.201901267
10.1038/s41598-017-16711-9
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s10008-023-05689-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1433-0768
EndPage 431
ExternalDocumentID 10_1007_s10008_023_05689_2
GrantInformation_xml – fundername: Technology Mission Division, Energy and Water
  grantid: DST/TMD/MES/2K18/194(G)
– fundername: csir
  grantid: MLP-0320
GroupedDBID -58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFO
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFGCZ
AFLOW
AFNRJ
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9N
PF0
PT4
PT5
QOR
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SQXTU
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
ZMTXR
AACDK
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ACDTI
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
ID FETCH-LOGICAL-c270t-c93b008d8175e515e5ab9b7b1c3e4f6260f7b0ab7b0d9e4f048a7645cca5f4693
IEDL.DBID AEJHL
ISSN 1432-8488
IngestDate Wed Nov 06 07:16:21 EST 2024
Thu Nov 21 21:29:36 EST 2024
Thu Feb 01 06:18:14 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Quinoxaline
Diffusion kinetics
Stereochemistry of substituents
Aqueous zinc battery
Organic cathode
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-c93b008d8175e515e5ab9b7b1c3e4f6260f7b0ab7b0d9e4f048a7645cca5f4693
ORCID 0000-0002-9742-8104
0000-0002-2255-2872
PQID 2920614764
PQPubID 2043698
PageCount 13
ParticipantIDs proquest_journals_2920614764
crossref_primary_10_1007_s10008_023_05689_2
springer_journals_10_1007_s10008_023_05689_2
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Energy, Materials and Environmental Science & Technology
PublicationTitle Journal of solid state electrochemistry
PublicationTitleAbbrev J Solid State Electrochem
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References KoSHKimSWLeeYJSci Rep20211121101347029598548538
QiuPAgneMTLiuYZhuYChenHMaoTYangJZhangWHaileSMZeierWGJanekJUherCShiXChenLSnyderGJNat Commun201892910300461016060128
LinZShiH-YLinLYangXWuWSunXNat Commun20211244241:CAS:528:DC%2BB3MXhsF2mtLjO342852158292436
Luo H, Papaioannou N, Salvadori E, Roessler MM, Ploenes G, van Eck ER, Tanase LC, Feng J, Sun Y, Yang Y, Danaie M et al (2019) ChemSusChem 12:4432–4441
MarenichAVHoJCooteMLCramerCJTruhlarDGPhys Chem Chem Phys20141615068151061:CAS:528:DC%2BC2cXhtVCis7vK24958074
NovákPMüllerKSanthanamKSVHaasOChem Rev19979720728211848869
HePQuanYXuXYanMYangWAnQHeLMaiLSmall2017131702551
ZhangSLiZCaiLLiYPolVGChem Eng J20214161:CAS:528:DC%2BB3MXlvFSnuro%3D
TangBZhaoJXuJ-FZhangXChem Sci202011119212041:CAS:528:DC%2BB3cXjtlemtw%3D%3D341232438148027
Wang A, Kadam S, Li H, Shi S, Qi Y (2018) npj Comput Mater 4:15
HaldarSWangMBhauriyalPHazraAKhanAHBonVIsaacsMADeAShupletsovLBoenkeTGrotheJBrunnerHTE., Feng X. Dong, R., Schneemann A., Kaskel S., J Am Chem Soc2022144910191121:CAS:528:DC%2BB38Xht1emtbnK35543441
WangQLiuYChenPJ Power Sources20204681:CAS:528:DC%2BB3cXhtVejurnE
XieJRuiXGuPWuJXuZJYanQZhangQACS Appl Mater Interfaces2016816932169381:CAS:528:DC%2BC28Xps1Oqs78%3D27294418
ConradieJJ Phys: Conf Ser2015633
GorbachevVTsybizovaAMiloglyadovaLChenPJ Am Chem Soc2022144900790221:CAS:528:DC%2BB38Xht1CkurvF35549249
Chao D, Liang P, Chen Z, Bai L, Shen H, Liu X, Xia X, Zhao Y, Savilov SV, Lin J, Shen ZX (2016) ACS Nano 10:10211–10219
PoizotPGaubicherJRenaultSDuboisLLiangYYaoYChem Rev2020120649065571:CAS:528:DC%2BB3cXltlylsrw%3D32207919
TuttleMRDavisSTZhangSACS Energy Lett202166436491:CAS:528:DC%2BB3MXhvVyjur4%3D
WangYYangZXiaTPanGZhangLChenHZhangJChemElectroChem20196508050851:CAS:528:DC%2BC1MXhvFOrsr3O
Qiao L, Rodriguez Pena S, Martínez-Ibañez M, Santiago A, Aldalur I, Lobato E, Sanchez-Diez E, Zhang Y, Manzano H, Zhu H, Forsyth M et al (2022) J Am Chem Soc jacs.2c02260
DelaporteNTrudeauMLBélangerDZaghibKMaterials2020139421:CAS:528:DC%2BB3cXhtlSgtrrF320932257078597
CholaNMNagaraleRKJ Electrochem Soc20221691:CAS:528:DC%2BB3sXnslOitbY%3D
Han C, Li H, Shi R, Zhang T, Tong J, Li J, Li B (2019) J Mater Chem A 7:23378–23415
PatilNMavrandonakisAJérômeCDetrembleurCCasadoNMecerreyesDPalmaJMarcillaRJ Mater Chem A202195055141:CAS:528:DC%2BB3cXis1WktrzO
CholaNMNagaraleRKJ Electrochem Soc Meet Abstr MA20222022–0221
WangSWangLZhuZHuZZhaoQChenJAngew Chem Int Ed201453589258961:CAS:528:DC%2BC2cXjtVGmsro%3D
WangQXuXYangGLiuYYaoXChem Commun20205611859118621:CAS:528:DC%2BB3cXhs1yjsrfK
NishideHSugaTBatteryORElectrochemSoc Interface20051432361:CAS:528:DC%2BD2MXhtlGmsLnL
Huang J, Su L, Kowalski JA, Barton JL, Ferrandon M, Burrell AK, Brushett FR, Zhang L (2015) J Mater Chem A 14971–14976
CholaNMSreenathSDaveBNagaraleRKElectrophoresis201940297929871:CAS:528:DC%2BC1MXhvFSitbfI31478226
SebtiEEvansHAChenHRichardsonPMWhiteKMGiovineRKoiralaKPXuYGonzalez-CorreaEWangCBrownCMCheethamAKCanepaPClémentRJJ Am Chem Soc2022144579558111:CAS:528:DC%2BB38XnvVKit7Y%3D353255348991002
Nguyen TP, Easley AD, Kang N, Khan S, Lim SM, Rezenom YH, Wang S, Tran DK, Fan J, Letteri RA, He X et al (2021) Nature 593:61–66
CholaNMSinghVVermaVNagaraleRKJ Electrochem Soc20221691:CAS:528:DC%2BB3sXnvFKksr0%3D
BizerayAMHoweyDAMonroeCWJ Electrochem Soc2016163E223E2291:CAS:528:DC%2BC28XhtVClt7jJ
Kim J, Park S, Hwang S, Yoon WS (2022) J Electrochem Sci Technol 13:19–31
KunduDOberholzerPGlarosCBouzidATervoortEPasquarelloANiederbergerMChem Mater201830387438811:CAS:528:DC%2BC1cXptFeqsLk%3D
Tabor DP, Gómez-Bombarelli R, Tong L, Gordon RG, Aziz MJ, Aspuru-Guzik A (2019) J Mater Chem A 7:12833–12841
TuXCWuZGengXQuL-LSunH-MLaiCLiD-SZhangSJ Mater Chem A2021918306183121:CAS:528:DC%2BB3MXhs1yiur7E
Häupler B, Rössel C, Schwenke AM, Winsberg J, Schmidt D, Wild A, Schubert US (2016) NPG Asia Mater 8:e283–e283
Tang M, Zhu S, Liu Z, Jiang C, Wu Y, Li H, Wang B, Wang E, Ma J, Wang C (2018) Chem 4:2600–2614
Ren W, Cheng J, Ou H, Huang C, Titirici M, Wang X (2019) mChemSusChem 12:3257–3262
SchiedTNickolAHeubnerCSchneiderMMichaelisABobethMCunibertiGChemPhysChem2021228858931:CAS:528:DC%2BB3MXosl2gsLY%3D336156338252744
ChenZSunPBaiPSuHYangJLiuYXuYGengYChem Commun20215710791107941:CAS:528:DC%2BB3MXitVegtrfE
LeungPAiliDXuQRodchanarowanAShahAASustainable Energy Fuels20182225222591:CAS:528:DC%2BC1cXhsVentrnK
SchonTBMcAllisterBTLiP-FSeferosDSChem Soc Rev201645634564041:CAS:528:DC%2BC28XpsVGhu78%3D27273252
AssaryRSZhangLHuangJCurtissLAJ Phys Chem C201612014531145381:CAS:528:DC%2BC28XpvVWmurc%3D
MaoYHead-GordonMShaoYChem Sci20189859886071:CAS:528:DC%2BC1cXhslCntL3F305687856253684
ChaoDLiangPChenZBaiLShenHLiuXXiaXZhaoYSavilovSVLinJShenZXACS Nano20161010211102191:CAS:528:DC%2BC28XhslCgsb3O27768284
MuenchSWildAFriebeCHäuplerBJanoschkaTSchubertUSChem Rev2016116943894841:CAS:528:DC%2BC28Xht1Ggtr7J27479607
LeeYSRyuK-SSci Rep2017716617291922205709400
CholaNMNagaraleRKJ Electrochem Soc20201671:CAS:528:DC%2BB3cXhs1antLzP
BhosaleMEChaeSKimJMChoiJYJ Mater Chem A2018619885199111:CAS:528:DC%2BC1cXhslequ7vN
ChenCLiZXuYAnYWuLSunYLiaoHZhengKZhangXACS Sustainable Chem Eng2021913268132761:CAS:528:DC%2BB3MXitVOnsbrE
Nikumbe DY, Sreenath S, Paramasivam S, Pawar CM, Bavdane PP, Kumar SS, Nagarale RK (2021) J Energy Storage 40:102689
Jensen AC, Olsson E, Au H, Alptekin H, Yang Z, Cottrell S, Yokoyama K, Cai Q, Titirici MM, Drew AJ (2020) J Mater Chem A 8:743–749
RenzDCronauMRolingBJ Phys Chem C2021125223022391:CAS:528:DC%2BB3MXht1eqs78%3D
CholaNMNagaraleRKMater Adv20223431043211:CAS:528:DC%2BB38XhtVKntL%2FK
LiHSunMZhangTFangYWangGJ Mater Chem A2014218345183521:CAS:528:DC%2BC2cXhsVynurnF
CabañeroMABoarettoNRöderMMüllerJKalloJLatzAJ Electrochem Soc2018165A847A855
LiuYXieLZhangWDaiZWeiWLuoSChenXChenWRaoFWangLHuangYACS Appl Mater Interfaces20191130943309521:CAS:528:DC%2BC1MXhsVOht77E31364840
Desai P, Huang J, Hijazi H, Zhang L, Mariyappan S, Tarascon JM (2021) Adv Energy Mater 11:2101490
CholaNMNagaraleRKNew J Chem20224622593226011:CAS:528:DC%2BB38XivVOhsbnI
WangBZhangYZhuYShenY-MWangWChenZCaoJXuJJ Power Sources20204511:CAS:528:DC%2BB3cXhvFKksbo%3D
ShiH-YYeY-JLiuKSongYSunXAngew Chem Int Ed20185716359163631:CAS:528:DC%2BC1cXit1Wit77I
ZhangYDuNYangDNanoscale20191119086191041:CAS:528:DC%2BC1MXhslCgurbI31538999
KimBStorchGBanerjeeGMercadoBQCastillo-LoraJBrudvigGWMayerJMMillerSJJ Am Chem Soc201713915239152441:CAS:528:DC%2BC2sXhsFeitLvM289312805735348
DasPRKomsiyskaLOstersOWittstockGJ Electrochem Soc2015162A674A6781:CAS:528:DC%2BC2MXjtVehu7w%3D
DibdenJWMeddingsNOwenJRGarcia-AraezNChemElectroChem201854454541:CAS:528:DC%2BC2sXhvFWgu77I
CholaNMNagaraleRKJ Electrochem Soc20211681:CAS:528:DC%2BB3MXisV2js7zI
GlatzHLizundiaEPacificoFKunduDACS Appl Energy Mater20192128812941:CAS:528:DC%2BC1MXhvF2itrk%3D
Kim H, Goodson III T, Zimmerman PM (2016) J Phys Chem C 120:22235–22247
LiangYYaoYJoule20182169017061:CAS:528:DC%2BC1cXhslKiu7vI
FriebeCLex-BalducciASchubertUSChemsuschem201912409341151:CAS:528:DC%2BC1MXhs1Cis7vP312979746790600
Man Z, Li P, Zhou D, Zang R, Wang S, Li P, Liu S, Li X, Wu Y, Liang X, Wang G (2019) J Mater Chem A 7:2368–2375
Zhang J, Yang Z, Shkrob IA, Assary RS, Tung SO, Silcox B, Duan W, Zhang J, Su CC, Hu B, Pan B et al (2017) Adv Energy Mater 7:1701272
DerekaBLewisNHCZhangYHahnNTKeimJHSnyderSAMaginnEJTokmakoffAJ Am Chem Soc2022144859186041:CAS:528:DC%2BB38XhtVyisbbP35470669
C Chen (5689_CR53) 2021; 9
5689_CR61
H Li (5689_CR67) 2014; 2
NM Chola (5689_CR18) 2022; 2022–02
H Glatz (5689_CR60) 2019; 2
J Conradie (5689_CR29) 2015; 633
Y Liang (5689_CR4) 2018; 2
D Renz (5689_CR38) 2021; 125
5689_CR22
B Kim (5689_CR42) 2017; 139
5689_CR23
5689_CR20
5689_CR21
P Novák (5689_CR6) 1997; 97
5689_CR63
D Chao (5689_CR33) 2016; 10
MR Tuttle (5689_CR49) 2021; 6
NM Chola (5689_CR11) 2022; 46
AV Marenich (5689_CR27) 2014; 16
NM Chola (5689_CR35) 2019; 40
H-Y Shi (5689_CR66) 2018; 57
Q Wang (5689_CR32) 2020; 468
PR Das (5689_CR64) 2015; 162
N Delaporte (5689_CR25) 2020; 13
5689_CR50
D Kundu (5689_CR59) 2018; 30
NM Chola (5689_CR57) 2022; 169
5689_CR14
E Sebti (5689_CR48) 2022; 144
Y Mao (5689_CR28) 2018; 9
V Gorbachev (5689_CR45) 2022; 144
5689_CR51
Q Wang (5689_CR7) 2020; 56
5689_CR52
ME Bhosale (5689_CR5) 2018; 6
5689_CR19
AM Bizeray (5689_CR69) 2016; 163
5689_CR16
T Schied (5689_CR36) 2021; 22
B Dereka (5689_CR46) 2022; 144
S Wang (5689_CR24) 2014; 53
B Tang (5689_CR41) 2020; 11
Z Chen (5689_CR15) 2021; 57
S Zhang (5689_CR17) 2021; 416
5689_CR9
Y Liu (5689_CR65) 2019; 11
TB Schon (5689_CR2) 2016; 45
SH Ko (5689_CR68) 2021; 11
XC Tu (5689_CR10) 2021; 9
N Patil (5689_CR12) 2021; 9
B Wang (5689_CR31) 2020; 451
P He (5689_CR37) 2017; 13
YS Lee (5689_CR40) 2017; 7
Z Lin (5689_CR34) 2021; 12
5689_CR72
S Haldar (5689_CR47) 2022; 144
NM Chola (5689_CR58) 2021; 168
NM Chola (5689_CR56) 2022; 3
P Poizot (5689_CR1) 2020; 120
5689_CR75
5689_CR76
5689_CR73
Y Zhang (5689_CR71) 2019; 11
5689_CR74
JW Dibden (5689_CR62) 2018; 5
C Friebe (5689_CR3) 2019; 12
MA Cabañero (5689_CR39) 2018; 165
NM Chola (5689_CR43) 2022; 169
Y Wang (5689_CR13) 2019; 6
P Qiu (5689_CR70) 2018; 9
H Nishide (5689_CR8) 2005; 14
RS Assary (5689_CR26) 2016; 120
J Xie (5689_CR30) 2016; 8
P Leung (5689_CR44) 2018; 2
NM Chola (5689_CR55) 2020; 167
S Muench (5689_CR54) 2016; 116
References_xml – volume: 167
  year: 2020
  ident: 5689_CR55
  publication-title: J Electrochem Soc
  doi: 10.1149/1945-7111/ab9cc9
  contributor:
    fullname: NM Chola
– volume: 168
  year: 2021
  ident: 5689_CR58
  publication-title: J Electrochem Soc
  doi: 10.1149/1945-7111/ac275a
  contributor:
    fullname: NM Chola
– volume: 57
  start-page: 10791
  year: 2021
  ident: 5689_CR15
  publication-title: Chem Commun
  doi: 10.1039/D1CC03938E
  contributor:
    fullname: Z Chen
– volume: 165
  start-page: A847
  year: 2018
  ident: 5689_CR39
  publication-title: J Electrochem Soc
  doi: 10.1149/2.0301805jes
  contributor:
    fullname: MA Cabañero
– ident: 5689_CR52
  doi: 10.1021/acsnano.6b05566
– volume: 139
  start-page: 15239
  year: 2017
  ident: 5689_CR42
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.7b09176
  contributor:
    fullname: B Kim
– volume: 6
  start-page: 643
  year: 2021
  ident: 5689_CR49
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.0c02604
  contributor:
    fullname: MR Tuttle
– volume: 97
  start-page: 207
  year: 1997
  ident: 5689_CR6
  publication-title: Chem Rev
  doi: 10.1021/cr941181o
  contributor:
    fullname: P Novák
– volume: 2
  start-page: 1288
  year: 2019
  ident: 5689_CR60
  publication-title: ACS Appl Energy Mater
  doi: 10.1021/acsaem.8b01851
  contributor:
    fullname: H Glatz
– ident: 5689_CR22
  doi: 10.1039/C9TA03219C
– volume: 120
  start-page: 6490
  year: 2020
  ident: 5689_CR1
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.9b00482
  contributor:
    fullname: P Poizot
– ident: 5689_CR63
  doi: 10.33961/jecst.2021.00836
– volume: 11
  start-page: 19086
  year: 2019
  ident: 5689_CR71
  publication-title: Nanoscale
  doi: 10.1039/C9NR05748J
  contributor:
    fullname: Y Zhang
– volume: 2
  start-page: 18345
  year: 2014
  ident: 5689_CR67
  publication-title: J Mater Chem A
  doi: 10.1039/C4TA03366C
  contributor:
    fullname: H Li
– ident: 5689_CR72
  doi: 10.1038/s41524-018-0064-0
– volume: 14
  start-page: 32
  year: 2005
  ident: 5689_CR8
  publication-title: Soc Interface
  contributor:
    fullname: H Nishide
– volume: 53
  start-page: 5892
  year: 2014
  ident: 5689_CR24
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201400032
  contributor:
    fullname: S Wang
– volume: 144
  start-page: 5795
  year: 2022
  ident: 5689_CR48
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.1c11335
  contributor:
    fullname: E Sebti
– volume: 169
  year: 2022
  ident: 5689_CR43
  publication-title: J Electrochem Soc
  doi: 10.1149/1945-7111/ac64c9
  contributor:
    fullname: NM Chola
– ident: 5689_CR61
  doi: 10.1038/am.2016.82
– volume: 40
  start-page: 2979
  year: 2019
  ident: 5689_CR35
  publication-title: Electrophoresis
  doi: 10.1002/elps.201900230
  contributor:
    fullname: NM Chola
– volume: 6
  start-page: 19885
  year: 2018
  ident: 5689_CR5
  publication-title: J Mater Chem A
  doi: 10.1039/C8TA04906H
  contributor:
    fullname: ME Bhosale
– volume: 9
  start-page: 505
  year: 2021
  ident: 5689_CR12
  publication-title: J Mater Chem A
  doi: 10.1039/D0TA09404H
  contributor:
    fullname: N Patil
– volume: 5
  start-page: 445
  year: 2018
  ident: 5689_CR62
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201701004
  contributor:
    fullname: JW Dibden
– ident: 5689_CR14
  doi: 10.1039/C8TA11230D
– volume: 3
  start-page: 4310
  year: 2022
  ident: 5689_CR56
  publication-title: Mater Adv
  doi: 10.1039/D2MA00063F
  contributor:
    fullname: NM Chola
– ident: 5689_CR23
  doi: 10.1021/acs.jpcc.6b07558
– volume: 468
  year: 2020
  ident: 5689_CR32
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2020.228401
  contributor:
    fullname: Q Wang
– volume: 13
  start-page: 942
  year: 2020
  ident: 5689_CR25
  publication-title: Materials
  doi: 10.3390/ma13040942
  contributor:
    fullname: N Delaporte
– volume: 45
  start-page: 6345
  year: 2016
  ident: 5689_CR2
  publication-title: Chem Soc Rev
  doi: 10.1039/C6CS00173D
  contributor:
    fullname: TB Schon
– volume: 144
  start-page: 8591
  year: 2022
  ident: 5689_CR46
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.2c00154
  contributor:
    fullname: B Dereka
– ident: 5689_CR75
  doi: 10.1039/C9TA10113F
– volume: 22
  start-page: 885
  year: 2021
  ident: 5689_CR36
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.202001025
  contributor:
    fullname: T Schied
– volume: 13
  start-page: 1702551
  year: 2017
  ident: 5689_CR37
  publication-title: Small
  doi: 10.1002/smll.201702551
  contributor:
    fullname: P He
– volume: 9
  start-page: 13268
  year: 2021
  ident: 5689_CR53
  publication-title: ACS Sustainable Chem Eng
  doi: 10.1021/acssuschemeng.1c04481
  contributor:
    fullname: C Chen
– volume: 162
  start-page: A674
  year: 2015
  ident: 5689_CR64
  publication-title: J Electrochem Soc
  doi: 10.1149/2.0581504jes
  contributor:
    fullname: PR Das
– volume: 10
  start-page: 10211
  year: 2016
  ident: 5689_CR33
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b05566
  contributor:
    fullname: D Chao
– volume: 56
  start-page: 11859
  year: 2020
  ident: 5689_CR7
  publication-title: Chem Commun
  doi: 10.1039/D0CC05344A
  contributor:
    fullname: Q Wang
– volume: 2
  start-page: 2252
  year: 2018
  ident: 5689_CR44
  publication-title: Sustainable Energy Fuels
  doi: 10.1039/C8SE00205C
  contributor:
    fullname: P Leung
– volume: 11
  start-page: 30943
  year: 2019
  ident: 5689_CR65
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.9b09802
  contributor:
    fullname: Y Liu
– volume: 9
  start-page: 8598
  year: 2018
  ident: 5689_CR28
  publication-title: Chem Sci
  doi: 10.1039/C8SC02990C
  contributor:
    fullname: Y Mao
– volume: 12
  start-page: 4424
  year: 2021
  ident: 5689_CR34
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-24701-9
  contributor:
    fullname: Z Lin
– volume: 11
  start-page: 1192
  year: 2020
  ident: 5689_CR41
  publication-title: Chem Sci
  doi: 10.1039/C9SC06143F
  contributor:
    fullname: B Tang
– ident: 5689_CR21
  doi: 10.1039/C5TA02380G
– volume: 144
  start-page: 9101
  year: 2022
  ident: 5689_CR47
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.2c02346
  contributor:
    fullname: S Haldar
– ident: 5689_CR50
  doi: 10.1016/j.chempr.2018.08.014
– ident: 5689_CR19
  doi: 10.1016/j.est.2021.102689
– volume: 9
  start-page: 2910
  year: 2018
  ident: 5689_CR70
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-05248-8
  contributor:
    fullname: P Qiu
– volume: 416
  year: 2021
  ident: 5689_CR17
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2021.129171
  contributor:
    fullname: S Zhang
– volume: 2022–02
  start-page: 21
  year: 2022
  ident: 5689_CR18
  publication-title: J Electrochem Soc Meet Abstr MA
  doi: 10.1149/MA2022-02121mtgabs
  contributor:
    fullname: NM Chola
– volume: 120
  start-page: 14531
  year: 2016
  ident: 5689_CR26
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.6b04263
  contributor:
    fullname: RS Assary
– ident: 5689_CR73
  doi: 10.1002/aenm.202101490
– ident: 5689_CR20
  doi: 10.1002/aenm.201701272
– volume: 16
  start-page: 15068
  year: 2014
  ident: 5689_CR27
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C4CP01572J
  contributor:
    fullname: AV Marenich
– volume: 30
  start-page: 3874
  year: 2018
  ident: 5689_CR59
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.8b01317
  contributor:
    fullname: D Kundu
– volume: 2
  start-page: 1690
  year: 2018
  ident: 5689_CR4
  publication-title: Joule
  doi: 10.1016/j.joule.2018.07.008
  contributor:
    fullname: Y Liang
– ident: 5689_CR16
  doi: 10.1039/C9TA05252F
– volume: 144
  start-page: 9007
  year: 2022
  ident: 5689_CR45
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.2c01381
  contributor:
    fullname: V Gorbachev
– volume: 633
  year: 2015
  ident: 5689_CR29
  publication-title: J Phys: Conf Ser
  contributor:
    fullname: J Conradie
– volume: 116
  start-page: 9438
  year: 2016
  ident: 5689_CR54
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.6b00070
  contributor:
    fullname: S Muench
– volume: 163
  start-page: E223
  year: 2016
  ident: 5689_CR69
  publication-title: J Electrochem Soc
  doi: 10.1149/2.0451608jes
  contributor:
    fullname: AM Bizeray
– ident: 5689_CR9
  doi: 10.1038/s41586-021-03399-1
– volume: 8
  start-page: 16932
  year: 2016
  ident: 5689_CR30
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.6b04277
  contributor:
    fullname: J Xie
– volume: 125
  start-page: 2230
  year: 2021
  ident: 5689_CR38
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.0c07751
  contributor:
    fullname: D Renz
– volume: 57
  start-page: 16359
  year: 2018
  ident: 5689_CR66
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201808886
  contributor:
    fullname: H-Y Shi
– ident: 5689_CR74
  doi: 10.1002/cssc.201901795
– volume: 12
  start-page: 4093
  year: 2019
  ident: 5689_CR3
  publication-title: Chemsuschem
  doi: 10.1002/cssc.201901545
  contributor:
    fullname: C Friebe
– volume: 9
  start-page: 18306
  year: 2021
  ident: 5689_CR10
  publication-title: J Mater Chem A
  doi: 10.1039/D1TA05405H
  contributor:
    fullname: XC Tu
– volume: 11
  start-page: 21101
  year: 2021
  ident: 5689_CR68
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-00712-w
  contributor:
    fullname: SH Ko
– volume: 46
  start-page: 22593
  year: 2022
  ident: 5689_CR11
  publication-title: New J Chem
  doi: 10.1039/D2NJ03495F
  contributor:
    fullname: NM Chola
– ident: 5689_CR51
– volume: 169
  year: 2022
  ident: 5689_CR57
  publication-title: J Electrochem Soc
  doi: 10.1149/1945-7111/ac4b85
  contributor:
    fullname: NM Chola
– volume: 451
  year: 2020
  ident: 5689_CR31
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2020.227788
  contributor:
    fullname: B Wang
– ident: 5689_CR76
  doi: 10.1002/cssc.201901011
– volume: 6
  start-page: 5080
  year: 2019
  ident: 5689_CR13
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201901267
  contributor:
    fullname: Y Wang
– volume: 7
  start-page: 16617
  year: 2017
  ident: 5689_CR40
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-16711-9
  contributor:
    fullname: YS Lee
SSID ssj0017610
Score 2.427061
Snippet Functional groups adjacent to the redox active center would have an uncompromising effect on the diffusion kinetics of the charge carriers. They expedite the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 419
SubjectTerms Analytical Chemistry
Capacitance
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Current carriers
Electrochemical analysis
Electrochemistry
Energy Storage
Functional groups
Ketones
Original Paper
Physical Chemistry
Quinoxalines
Title Quinoxaline derivatives as cathode for aqueous zinc battery
URI https://link.springer.com/article/10.1007/s10008-023-05689-2
https://www.proquest.com/docview/2920614764
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_c9qAvfovTKXnwTStd0jYdPo19MEQEUWF7KkmTwhDaYVdR_3ovWbup6IO-tJCWcFzver_LJb8DOKNUCUw7AscLqcKL8B0htXAM9ZwUUsbadmsY3fPbcdgfGJoctly6SJ8uq4qk_VF_OutmK_XUbDcLzNacGjQw9vho3I3u4Hp0syweYGZuz0F6DJ0dDbQ8K_PzLF_j0QpkfquL2nAz3PqXoNuwWaJL0l2Yww6s6XQX1ntVU7c9uLorpmn2Kgy4JAqt78USf-dE5MQwuGZKE4SxRKB8WZGT92kaE2k5ON_24XE4eOiNnLJ_ghNT7s6duMPQqUIVIkTQiFu0L2RHctmOmfYSk8kkXLoCR1zVwRF0ZsEDz8eP6ieYNrMDqKdZqg8BJUg4lb4KaCI8hikLApk48BIv1hjgebsJ55UWo9mCJiNaESK7ttUlZZFVSESb0KoUHZUuk0embRZiBRSgCReVZlePf5_t6G-vH8MGRWCy2Hndgvr8udAnUMtVcVoakrmPJ5P-B5_IwnA
link.rule.ids 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8MwDLVgO4wL34jBgBy4QaUuTZtOnKaxsYkxCTEkblXSpNIuLaIrAn49TtYyQHCASw9plVqu3TzL9jPAKaVKYNgROCykCi_Cd4TUwjHUc1JIGWs7rWF4xycP4WXf0OSwqhfGVrtXKUn7p_7U7GZT9dTUmwWmNmcV6vgWhrZc746mV4OP7AGG5rYRknno7WihZbPMz7t8PZCWKPNbYtSeN4ON_0m6CeslviTdhUFswYpOt6HRq8a67cDFbTFLsxdh4CVRaH_Plvo7JyInhsM1U5ogkCUCBcyKnLzN0phIy8L5ugv3g_60N3TKCQpOTLk7d-KOh24VqhBBgkbkon0hO5LLduxplphYJuHSFbjiqg6uoDsLHjAfP6ufYODs7UEtzVK9DyhBwqn0VUATwTwMWhDKxAFLWKzxiOftJpxVaoweF0QZ0ZIS2bXDLqkXWYVEtAmtStNR6TR5ZAZnIVpAAZpwXml2efv33Q7-9vgJNIbTm3E0Hk2uD2GNIkxZ1GG3oDZ_KvQRrOaqOC6t6h1DcsSu
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5sC-rFt1itmoM3DU03m0fxVFpji1IUK3gLu9kN9JIU04j6653dJK2KHsRLDpuwDLMz7DeZmW8AzggRDMMO16Q-Efhgjsm4ZKainuOM80jqaQ3DB2_85A-uFE3OootfV7tXKcmip0GxNCXz9kzE7U-NbzptT1TtmavqdGrQUL_FaB0avdHkOlhkEjBM102R1EbPR2stG2d-3uXr5bREnN-SpPruCTb_L_UWbJS40-gVhrINKzLZgbV-Ne5tFy7v82mSvjIFOw2BdvmiKcEzg2WG4nZNhTQQ4BoMhU3zzHifJpHBNTvn2x48BleT_tAsJyuYEfGsuRl1bXQ3X_gIHiQiGukw3uUe70S2pLGKcWKPWwxXLNHFFXRz5rnUweN2Ygyo7X2oJ2kiDwAliD3CHeGSmFEbgxmEOJFLYxpJvPq9ThPOK5WGs4JAI1xSJVt6CCaxQ62QkDShVWk9LJ0pC9VALUQRKEATLiotL1__vtvh3z4_hdW7QRDejsY3R7BOEL0U5dktqM-fc3kMtUzkJ6WBfQDUWs2H
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quinoxaline+derivatives+as+cathode+for+aqueous+zinc+battery&rft.jtitle=Journal+of+solid+state+electrochemistry&rft.au=Chola%2C+Noufal+Merukan&rft.au=Nagarale%2C+Rajaram+K.&rft.date=2024-02-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1432-8488&rft.eissn=1433-0768&rft.volume=28&rft.issue=2&rft.spage=419&rft.epage=431&rft_id=info:doi/10.1007%2Fs10008-023-05689-2&rft.externalDocID=10_1007_s10008_023_05689_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-8488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-8488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-8488&client=summon