Quinoxaline derivatives as cathode for aqueous zinc battery

Functional groups adjacent to the redox active center would have an uncompromising effect on the diffusion kinetics of the charge carriers. They expedite the diffusion process by extensive H-bonding, charge delocalization, and functional group polarization by tautomerism or resonance which would hav...

Full description

Saved in:
Bibliographic Details
Published in:Journal of solid state electrochemistry Vol. 28; no. 2; pp. 419 - 431
Main Authors: Chola, Noufal Merukan, Nagarale, Rajaram K.
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01-02-2024
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Functional groups adjacent to the redox active center would have an uncompromising effect on the diffusion kinetics of the charge carriers. They expedite the diffusion process by extensive H-bonding, charge delocalization, and functional group polarization by tautomerism or resonance which would have long held influence on the electrochemical performance of the material. Herein, we introduced a ketonic functional group adjacent to the quinoxaline redox center which accelerates the diffusion of the charge carriers. Quinoxaline nuclei with free rotating phenyl rings (DAB) exhibited a specific capacitance of 156.4 mAhg −1 at 50 mAg −1 which was found drastically decreased due to the excessive dissolution of the material as well as the uncontrolled ring flipping of the phenyl rings. By introducing a ketone functional group and stagnant phenyl rings with a fused ring system the specific capacitance was found to be improved to a considerable extent. The quinoxaline redox center with a fused ring system and symmetrically placed ketone functional groups (TKQ) exhibited a specific capacitance of 286.7 mAhg −1 at 50 mAg −1 and remained 224.8 mAhg −1 after prolonged 1000 cycles, with 95% coulombic efficiency and 79.4% retention in the discharge capacity. The study suggests that smart molecular engineering is necessary for excellent rate performance, rate reversibility, coulombic efficiency, and capacity retention. Graphical abstract
ISSN:1432-8488
1433-0768
DOI:10.1007/s10008-023-05689-2