On Sharp Olsen’s and Trace Inequalities for Multilinear Fractional Integrals

We establish a sharp Olsen type inequality g I α ( f 1 , … , f m ) L r q ≤ C g L ℓ q ∏ j = 1 m f j L s j p j for multilinear fractional integrals I α ( f → ) ( x ) = ∫ ( ℝ n ) m f 1 ( y 1 ) ⋯ f m ( y m ) ( | x − y 1 | + ⋯ + | x − y m | ) m n − α d y → , x ∈ ℝ n , 0 < α < m n , where L r q , L...

Full description

Saved in:
Bibliographic Details
Published in:Potential analysis Vol. 59; no. 3; pp. 1039 - 1050
Main Authors: Grafakos, Loukas, Meskhi, Alexander
Format: Journal Article
Language:English
Published: Dordrecht Springer Netherlands 01-10-2023
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We establish a sharp Olsen type inequality g I α ( f 1 , … , f m ) L r q ≤ C g L ℓ q ∏ j = 1 m f j L s j p j for multilinear fractional integrals I α ( f → ) ( x ) = ∫ ( ℝ n ) m f 1 ( y 1 ) ⋯ f m ( y m ) ( | x − y 1 | + ⋯ + | x − y m | ) m n − α d y → , x ∈ ℝ n , 0 < α < m n , where L r q , L ℓ q , L s j p j , j = 1,…, m , are Morrey space with indices satisfying certain homogeneity conditions. This inequality is sharp because it gives necessary and sufficient condition on a weight function V for which the inequality I α ( f 1 , … , f m ) L r q ( V ) ≤ C ∏ j = 1 m f j L s j p j holds. Morrey spaces play an important role in relation to regularity problems of solutions of partial differential equations. They describe the integrability more precisely than Lebesgue spaces. We also derive a characterization of the trace inequality B α ( f 1 , f 2 ) L r q ( d μ ) ≤ C ∏ j = 1 2 f j L s j p j ( ℝ n ) , in terms of a Borel measure μ , where B α is the bilinear fractional integral operator given by the formula B α ( f 1 , f 2 ) ( x ) = ∫ ℝ n f 1 ( x + t ) f 2 ( x − t ) | t | n − α d t , 0 < α < n , Some of our results are new even in the linear case, i.e. when m = 1.
ISSN:0926-2601
1572-929X
DOI:10.1007/s11118-022-09991-y