Thermodynamic and Kinetic Study for Silver Recovery by Electrocoagulation Process
Merrill-Crowe is the primary process used for the concentration and purification of silver in a cyanide solution. The Langmuir Adsorption model for silver recovery in a cyanide solution was used for the study. The maximum adsorption capacity was 6.19 mmol/g for silver. This model properly adjusts th...
Saved in:
Published in: | Mining, metallurgy & exploration Vol. 39; no. 1; pp. 153 - 159 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Cham
Springer International Publishing
01-02-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Merrill-Crowe is the primary process used for the concentration and purification of silver in a cyanide solution. The Langmuir Adsorption model for silver recovery in a cyanide solution was used for the study. The maximum adsorption capacity was 6.19 mmol/g for silver. This model properly adjusts the experimental results of the adsorption equilibrium with high correlation coefficients, which also favors the formation of a single layer of molecules adsorbed for the silver in the electrocoagulation-generated species. The thermodynamic parameters ΔG, ΔH, and ΔS were estimated, and it was found that the adsorption process is exothermic and spontaneous. For the kinetic study, the Lagergren second-order equation was used to study the adsorption speed. To characterize the solids coming from the electrocoagulation, X-ray diffraction (XRD), and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) were used; the results of this study suggest that silver is present in aluminite, hydroniumjarosite, and alunogen. |
---|---|
ISSN: | 2524-3462 2524-3470 |
DOI: | 10.1007/s42461-021-00509-5 |