Transient Thermal Management of a β-Ga₂O₃ MOSFET Using a Double-Side Diamond Cooling Approach
<inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>-phase gallium oxide (<inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>-Ga2O3) has drawn significant attention due to its lar...
Saved in:
Published in: | IEEE transactions on electron devices Vol. 70; no. 4; pp. 1628 - 1635 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
01-04-2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>-phase gallium oxide (<inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>-Ga2O3) has drawn significant attention due to its large critical electric field strength and the availability of low-cost high-quality melt-grown substrates. Both aspects are advantages over gallium nitride (GaN) and silicon carbide (SiC) based power switching devices. However, because of the poor thermal conductivity of <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>-Ga2O3, device-level thermal management is critical to avoid performance degradation and component failure due to overheating. In addition, for high-frequency operation, the low thermal diffusivity of <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>-Ga2O3 results in a long thermal time constant, which hinders the use of previously developed thermal solutions for devices based on relatively high thermal conductivity materials (e.g., GaN transistors). This work investigates a double-side diamond-cooled <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>-Ga2O3 device architecture and provides guidelines to maximize the device's thermal performance under both direct current (dc) and high-frequency switching operation. Under high-frequency operation, the use of a <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>-Ga2O3 composite substrate (bottom-side cooling) must be augmented by a diamond passivation overlayer (top-side cooling) because of the low thermal diffusivity of <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>-Ga2O3. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2023.3244134 |