Transient Thermal Management of a β-Ga₂O₃ MOSFET Using a Double-Side Diamond Cooling Approach

<inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>-phase gallium oxide (<inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>-Ga2O3) has drawn significant attention due to its lar...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices Vol. 70; no. 4; pp. 1628 - 1635
Main Authors: Kim, Samuel H., Shoemaker, Daniel, Green, Andrew J., Chabak, Kelson D., Liddy, Kyle J., Graham, Samuel, Choi, Sukwon
Format: Journal Article
Language:English
Published: New York IEEE 01-04-2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:<inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>-phase gallium oxide (<inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>-Ga2O3) has drawn significant attention due to its large critical electric field strength and the availability of low-cost high-quality melt-grown substrates. Both aspects are advantages over gallium nitride (GaN) and silicon carbide (SiC) based power switching devices. However, because of the poor thermal conductivity of <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>-Ga2O3, device-level thermal management is critical to avoid performance degradation and component failure due to overheating. In addition, for high-frequency operation, the low thermal diffusivity of <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>-Ga2O3 results in a long thermal time constant, which hinders the use of previously developed thermal solutions for devices based on relatively high thermal conductivity materials (e.g., GaN transistors). This work investigates a double-side diamond-cooled <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>-Ga2O3 device architecture and provides guidelines to maximize the device's thermal performance under both direct current (dc) and high-frequency switching operation. Under high-frequency operation, the use of a <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>-Ga2O3 composite substrate (bottom-side cooling) must be augmented by a diamond passivation overlayer (top-side cooling) because of the low thermal diffusivity of <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>-Ga2O3.
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2023.3244134