Tropospheric Delay from VLBI and GNSS Measurements

Using an updated version of the QUASAR software package developed at the Institute of Applied Astronomy of the Russian Academy of Sciences, we have processed the VLBI observations within the international CONT14 program (May 6–20, 2014), in which a global network of 17 stations was involved (a total...

Full description

Saved in:
Bibliographic Details
Published in:Astronomy letters Vol. 44; no. 2; pp. 126 - 138
Main Author: Gubanov, V. S.
Format: Journal Article
Language:English
Published: Moscow Pleiades Publishing 01-02-2018
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Using an updated version of the QUASAR software package developed at the Institute of Applied Astronomy of the Russian Academy of Sciences, we have processed the VLBI observations within the international CONT14 program (May 6–20, 2014), in which a global network of 17 stations was involved (a total of ~250 000 observations). The package update concerned the optimization of data structure and the refinement of stochastic models for the random variations in wet tropospheric delay and atomic clock difference. The main goal of this paper is to compare the VLBI determinations of the tropospheric delay with its independent determinations using global navigation satellite systems (GNSS). We show that both these determinations agree well between themselves only in the case of a global analysis of the VLBI observations, where the VLBI station coordinates are also refined, along with the tropospheric delay and the clock synchronization and Earth orientation parameters. If, alternatively, the station coordinates are insufficiently accurate and are not refined from VLBI observations, then it is appropriate not to determine the tropospheric delay from these observations, but to take it from the publicly accessible independent GNSS data. However, this requires that the VLBI and GNSS techniques operate simultaneously at a common observing site. We have established the shortcomings of the universally accepted method of stabilizing the global solution associated with the absence of a criterion for choosing reference stations and radio sources. Two ways of their elimination are proposed: (i) introducing a coordinated list of weight factors for the errors in the coordinates of such stations and sources into the stabilization algorithm and (ii) adopting a coordinated list of stations and sources the refinement of whose coordinates is not required at all for a certain time.
ISSN:1063-7737
1562-6873
DOI:10.1134/S1063773718020032