Effect of Metformin on HIF-1α Signaling and Postoperative Adhesion Formation

Peritoneal adhesion formation is common after abdominal surgery and results in severe complications. Tissue hypoxia is one of the main drivers of peritoneal adhesions. Thus, we determined the clinical role of hypoxia-inducible factor (HIF)-1 signaling in peritoneal adhesions and investigated whether...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American College of Surgeons Vol. 234; no. 6; pp. 1167 - 1180
Main Authors: Biller, Marvin L, Tuffs, Christopher, Bleul, Marc, Tran, Dinh Thien-An, Dupovac, Mareen, Keppler, Ulrich, Harnoss, Jonathan M, Probst, Pascal, Schneider, Martin, Strowitzki, Moritz J
Format: Journal Article
Language:English
Published: United States 01-06-2022
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Peritoneal adhesion formation is common after abdominal surgery and results in severe complications. Tissue hypoxia is one of the main drivers of peritoneal adhesions. Thus, we determined the clinical role of hypoxia-inducible factor (HIF)-1 signaling in peritoneal adhesions and investigated whether the biguanide antidiabetic drug metformin shows HIF-inhibitory effects and could be repurposed to prevent adhesion formation. As part of the ReLap study (DRKS00013001), adhesive tissue from patients undergoing relaparotomy was harvested and graded using the adhesion grade score. HIF-1 signaling activity within tissue biopsies was determined and correlated with adhesion severity. The effect of metformin on HIF-1 activity was analyzed by quantification of HIF target gene expression and HIF-1 protein stabilization in human mesothelial cells and murine fibroblast under normoxia and hypoxia. Mice were treated with vehicle or metformin 3 days before and until 7 days after induction of peritoneal adhesions; alternatively, metformin treatment was discontinued 48 hours before induction of peritoneal adhesions. HIF-1 signaling activity correlated with adhesion severity in patient biopsies. Metformin significantly mitigated HIF-1 activity in vitro and in vivo. Oral treatment with metformin markedly prevented adhesion formation in mice even when the treatment was discontinued 48 hours before surgery. Although metformin treatment did not alter macrophage polarization, metformin reduced proinflammatory leucocyte infiltration and attenuated hypoxia-induced profibrogenic expression patterns and myofibroblast activation. Metformin mitigates adhesion formation by inhibiting HIF-1-dependent (myo)fibroblast activation, conferring an antiadhesive microenvironment after abdominal surgery. Repurposing the clinically approved drug metformin might be useful to prevent or treat postoperative adhesions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1072-7515
1879-1190
DOI:10.1097/XCS.0000000000000205