Effect of electrode flux composition on impact toughness of austenitic stainless-steel weld metal
The aim of this investigation was to determine whether the composition of a shielded-metal arc-welding electrode coating affected the low-temperature impact toughness of austenitic stainless-steel weld metal. It is generally accepted that increases in the 5-ferrite and nitrogen contents result in a...
Saved in:
Published in: | Journal of the Southern African Institute of Mining and Metallurgy Vol. 122; no. 7; pp. 1 - 7 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
01-07-2022
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The aim of this investigation was to determine whether the composition of a shielded-metal arc-welding electrode coating affected the low-temperature impact toughness of austenitic stainless-steel weld metal. It is generally accepted that increases in the 5-ferrite and nitrogen contents result in a decrease in toughness at low temperatures. Weld metal from electrodes with a basic coating also generally exhibit better toughness than those from rutile (acidic) electrodes. An increase in basicity was expected to decrease the number and size of inclusions, which in turn provides a tougher weld metal. Three commonly available potassium-rutile E308L electrodes were used, complying with the E308L-16 and E308L-17 specifications. Analysis of the electrode coatings showed very similar chemistry and basicity. Significant differences in the inclusion contents of the weld metals were observed: the E308L-17 weld metal had a lower inclusion content (1.4% by volume) than the E308L-16 weld metal (3.7%). The former had higher impact toughness at all temperatures, despite a slightly higher nitrogen content. Regression analysis confirmed that the inclusion content had a significant effect on the impact toughness at all temperatures. |
---|---|
ISSN: | 2225-6253 2411-9717 |
DOI: | 10.17159/2411-9717/1879/2022 |