Striking a Balance: Reader Takeaways and Preferences when Integrating Text and Charts
While visualizations are an effective way to represent insights about information, they rarely stand alone. When designing a visualization, text is often added to provide additional context and guidance for the reader. However, there is little experimental evidence to guide designers as to what is t...
Saved in:
Published in: | IEEE transactions on visualization and computer graphics Vol. 29; no. 1; pp. 1233 - 1243 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
IEEE
01-01-2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | While visualizations are an effective way to represent insights about information, they rarely stand alone. When designing a visualization, text is often added to provide additional context and guidance for the reader. However, there is little experimental evidence to guide designers as to what is the right amount of text to show within a chart, what its qualitative properties should be, and where it should be placed. Prior work also shows variation in personal preferences for charts versus textual representations. In this paper, we explore several research questions about the relative value of textual components of visualizations. 302 participants ranked univariate line charts containing varying amounts of text, ranging from no text (except for the axes) to a written paragraph with no visuals. Participants also described what information they could take away from line charts containing text with varying semantic content. We find that heavily annotated charts were not penalized. In fact, participants preferred the charts with the largest number of textual annotations over charts with fewer annotations or text alone. We also find effects of semantic content. For instance, the text that describes statistical or relational components of a chart leads to more takeaways referring to statistics or relational comparisons than text describing elemental or encoded components. Finally, we find different effects for the semantic levels based on the placement of the text on the chart; some kinds of information are best placed in the title, while others should be placed closer to the data. We compile these results into four chart design guidelines and discuss future implications for the combination of text and charts. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1077-2626 1941-0506 |
DOI: | 10.1109/TVCG.2022.3209383 |