A Machine Learning Solution for Beam Tracking in mmWave Systems

Utilizing millimeter-wave (mmWave) frequencies for wireless communication in mobile systems is challenging since it requires continuous tracking of the beam direction. Recently, beam tracking techniques based on channel sparsity and/or Kalman filter-based techniques were proposed where the solutions...

Full description

Saved in:
Bibliographic Details
Published in:2019 53rd Asilomar Conference on Signals, Systems, and Computers pp. 173 - 177
Main Authors: Burghal, Daoud, Abbasi, Naveed A., Molisch, Andreas F.
Format: Conference Proceeding
Language:English
Published: IEEE 01-11-2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Utilizing millimeter-wave (mmWave) frequencies for wireless communication in mobile systems is challenging since it requires continuous tracking of the beam direction. Recently, beam tracking techniques based on channel sparsity and/or Kalman filter-based techniques were proposed where the solutions use assumptions regarding the environment and device mobility that may not hold in practical scenarios. In this paper, we explore a machine learning-based approach to track the angle of arrival (AoA) for specific paths in realistic scenarios. In particular, we use a recurrent neural network (R-NN) structure with a modified cost function to track the AoA. We propose methods to train the network in sequential data, and study the performance of our proposed solution in comparison to an extended Kalman filter based solution in a realistic mmWave scenario based on stochastic channel model from the QuaDRiGa framework. Results show that our proposed solution outperforms an extended Kalman filter-based method by reducing the AoA outage probability, and thus reducing the need for frequent beam search.
ISSN:2576-2303
DOI:10.1109/IEEECONF44664.2019.9048770