Facile 18F labeling of non-activated arenes via a spirocyclic iodonium(III) ylide method and its application in the synthesis of the mGluR5 PET radiopharmaceutical [18F]FPEB

Non-activated (electron-rich and/or sterically hindered) arenes are prevalent chemical scaffolds in pharmaceuticals and positron emission tomography (PET) diagnostics. Despite substantial efforts to develop a general method to introduce 18 F into these moieties for molecular imaging by PET, there is...

Full description

Saved in:
Bibliographic Details
Published in:Nature protocols Vol. 14; no. 5; pp. 1530 - 1545
Main Authors: Liang, Steven H., Wang, Lu, Stephenson, Nickeisha A., Rotstein, Benjamin H., Vasdev, Neil
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 01-05-2019
Nature Publishing Group
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Non-activated (electron-rich and/or sterically hindered) arenes are prevalent chemical scaffolds in pharmaceuticals and positron emission tomography (PET) diagnostics. Despite substantial efforts to develop a general method to introduce 18 F into these moieties for molecular imaging by PET, there is an urgent and unmet need for novel radiofluorination strategies that result in sufficiently labeled tracers to enable human imaging. Herein, we describe an efficient method that relies on spirocyclic iodonium ylide (SCIDY) precursors for one-step and regioselective radiofluorination, as well as proof-of-concept translation to the radiosynthesis of a clinically useful PET tracer, 3-[ 18 F]fluoro-5-[(pyridin-3-yl)ethynyl] benzonitrile ([ 18 F]FPEB). The protocol begins with the preparation of a SCIDY precursor for FPEB, followed by radiosynthesis of [ 18 F]FPEB, by either manual operation or an automated synthesis module. [ 18 F]FPEB can be obtained in quantities >7.4 GBq (200 mCi), ready for injection (20 ± 5%, non–decay corrected), and has excellent chemical and radiochemical purity (>98%) as well as high molar activity (666 ± 51.8 GBq/μmol; 18 ± 1.4 Ci/μmol). The total time for the synthesis and purification of the corresponding labeling SCIDY precursor is 10 h. The subsequent radionuclide production, experimental setup, 18 F labeling, and formulation of a product that is ready for injection require 2 h. 18 F labeling of non-activated arenes (e.g., 3-[ 18 F]fluoro-5-[(pyridin-3-yl)ethynyl] benzonitrile ([ 18 F]FPEB)) is an unmet need for PET imaging. This protocol uses a spirocyclic iodonium ylide method for one-step, regioselective radiofluorination.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1754-2189
1750-2799
DOI:10.1038/s41596-019-0149-3