Filament-Based Atmospheric Dispersion Model to Achieve Short Time-Scale Structure of Odor Plumes
This article presents the theoretical motivation, implementation approach, and example validation results for a computationally efficient plume simulation model, designed to replicate both the short-term time signature and long-term exposure statistics of a chemical plume evolving in a turbulent flo...
Saved in:
Published in: | Environmental fluid mechanics (Dordrecht, Netherlands : 2001) Vol. 2; no. 1-2; pp. 143 - 169 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Dordrecht
Springer Nature B.V
01-06-2002
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article presents the theoretical motivation, implementation approach, and example validation results for a computationally efficient plume simulation model, designed to replicate both the short-term time signature and long-term exposure statistics of a chemical plume evolving in a turbulent flow. Within the resulting plume, the odor concentration is intermittent with rapidly changing spatial gradient. The model includes a wind field defined over the region of interest that is continuous, but which varies with location and time in both magnitude and direction. The plume shape takes a time varying sinuous form that is determined by the integrated effect of the wind field. Simulated and field data are compared. The motivation for the development of such a simulation model was the desire to evaluate various strategies for tracing odor plumes to their source, under identical conditions. The performance of such strategies depends in part on the instantaneous response of target receptors; therefore, the sequence of events is of considerable consequence and individual exemplar plume realizations are required. Due to the high number of required simulations, computational efficiency was critically important.[PUBLICATION ABSTRACT] |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1567-7419 1573-1510 |
DOI: | 10.1023/A:1016283702837 |