Na+/Ca2+ exchange and regulation of cytoplasmic concentration of calcium in rat cerebellar neurons treated with glutamate

In the present work, the forward and/or reversed Na+/Ca2+ exchange in cerebellar granular cells was suppressed by substitution of Na+o by Li+ before, during, and after exposure to glutamate for varied time and also using the inhibitor KB-R7943 of the reversed exchange. After glutamate challenge for...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Moscow) Vol. 72; no. 7; pp. 750 - 759
Main Authors: Storozhevykh, T P, Sorokina, E G, Vabnitz, A V, Senilova, Ya E, Tukhbatova, G R, Pinelis, V G
Format: Journal Article
Language:English
Published: United States Springer Nature B.V 01-07-2007
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the present work, the forward and/or reversed Na+/Ca2+ exchange in cerebellar granular cells was suppressed by substitution of Na+o by Li+ before, during, and after exposure to glutamate for varied time and also using the inhibitor KB-R7943 of the reversed exchange. After glutamate challenge for 1 min, Na+o/Li+ substitution did not influence the recovery of low [Ca2+]i in a calcium-free medium. A 1-h incubation with 100 microM glutamate induced in the neurons a biphasic and irreversible [Ca2+]i rise (delayed calcium deregulation (DCD)), enhancement of [Na+]i, and decrease in the mitochondrial potential. If Na+o had been substituted by Li+ before the application of glutamate, i.e. the exchange reversal was suppressed during the exposure to glutamate, the number of cells with DCD was nearly fourfold lowered. However, addition of the Na+/K+-ATPase inhibitor ouabain (0.5 mM) not preventing the exchange reversal also decreased DCD in the presence of glutamate. Both exposures decreased the glutamate-caused loss of intracellular ATP. Glucose deprivation partially abolished protective effects of the Na+o/Li+ substitution and ouabain. KB-R7943 (10 microM) increased 7.4-fold the number of cells with the [Ca2+]i decreased to the basal level after the exposure to glutamate. Thus, reversal of the Na+/Ca2+ exchange reinforced the glutamate-caused perturbations of calcium homeostasis in the neurons and slowed the recovery of the decreased [Ca2+]i in the post-glutamate period. However, for development of DCD, in addition to the exchange reversal, other factors are required, in particular a decrease in the intracellular concentration of ATP.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0006-2979
1608-3040
DOI:10.1134/S0006297907070097