Synthesis and characteristics of carbon-based synfuel from biomass and coal powder by synergistic co-carbonization technology

A synergistic co-carbonization method based on the use of corn stalk (CS), wood shavings (WS) and bituminous coal (BC) is proposed as a green and low-cost technology. The preparation parameters included a co-carbonization temperature of 600 °C, a co-carbonization time of 30 min, and a biomass/coal r...

Full description

Saved in:
Bibliographic Details
Published in:Renewable energy Vol. 227; p. 120458
Main Authors: Dong, Xinyuan, Wang, Zhixing, Zhang, Junhong, Zhan, Wenlong, Gao, Lihua, He, Zhijun
Format: Journal Article
Language:English
Published: Elsevier Ltd 01-06-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A synergistic co-carbonization method based on the use of corn stalk (CS), wood shavings (WS) and bituminous coal (BC) is proposed as a green and low-cost technology. The preparation parameters included a co-carbonization temperature of 600 °C, a co-carbonization time of 30 min, and a biomass/coal ratio of 4/6. The high calorific value (HCV) and bulk density of the CS/BC synfuel were 29.81 MJ kg−1 and 495 kg m−3, respectively, and those of the WS/BC synfuel were 30.11 MJ kg−1 and 485 kg m−3, respectively. The results indicated that the microcrystalline structure was ordered and that the proportion of the graphitic structure increased during the synergistic co-carbonization process. In addition, the co-carbonization process changed the contents of the functional groups on the surface. The amount of aromatic C–O increased during the synergistic co-carbonization process. Decreases in the O-containing functional groups and increases in the graphitic carbon content in the synfuel demonstrated that the interactions of the biomass volatiles with the bituminous coal generated a more regular structure for the carbon-based synfuel and changed the carbon type of the synfuel. This work provides a mechanism for the biomass and coal interactions occurring during the preparation of carbon-based synfuels. [Display omitted]
ISSN:0960-1481
1879-0682
DOI:10.1016/j.renene.2024.120458