Comparative Study on the Effect of Pyrophosphate and Tripolyphosphate on the Flotation Separation of Arsenopyrite and Muscovite
The aim of the study was to compare the effects and mechanism of tetrasodium pyrophosphate (TSPP) and sodium tripolyphosphate (STPP) as dispersants on the selective flotation of arsenopyrite from muscovite. The results of single-mineral flotation showed that the recovery of arsenopyrite was 81.4% wh...
Saved in:
Published in: | Minerals (Basel) Vol. 14; no. 8; p. 785 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
MDPI AG
01-08-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The aim of the study was to compare the effects and mechanism of tetrasodium pyrophosphate (TSPP) and sodium tripolyphosphate (STPP) as dispersants on the selective flotation of arsenopyrite from muscovite. The results of single-mineral flotation showed that the recovery of arsenopyrite was 81.4% when no dispersant was added. The recovery of arsenopyrite slightly decreased with increasing dosage of TSPP. When the dosage of STPP was 6 × 10−5 mol/L, the recovery of arsenopyrite was only 28.6%. Neither of the dispersants had significant influence on the muscovite flotation (<10%). However, in a mixed-mineral system, the recovery of arsenopyrite dropped significantly, and then under the action of dispersants, its recovery back up. The RPM results showed that the dispersion effect of TSPP was superior to that of STPP. The electrokinetic potential showed that the potential change value of muscovite with TSPP was −17.37 mV, while that of muscovite with STPP was −8.33 mV (pH = 8). The adsorption of TSPP onto muscovite was stronger than that of STPP. FTIR and XPS analysis confirmed that dispersants exhibited chemical adsorption with the Al atoms on muscovite and that dispersant STPP exhibited stonger adsorption than TSPP on arsenopyrite, which was consistent with flotation experiments. |
---|---|
ISSN: | 2075-163X |
DOI: | 10.3390/min14080785 |