Quantum capacitance transient phenomena in high-k dielectric armchair graphene nanoribbon field-effect transistor model
•Quantum capacitance becomes dominant with high-k ultra-thin dielectrics.•Quantum capacitance in Nanoribbons is influenced by Van-Hove singularities.•The transient mode in an armchair graphene nanoribbon field-effect transistor results in undulations.•An extended Verilog-A model was built to include...
Saved in:
Published in: | Solid-state electronics Vol. 184; p. 108060 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
01-10-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | •Quantum capacitance becomes dominant with high-k ultra-thin dielectrics.•Quantum capacitance in Nanoribbons is influenced by Van-Hove singularities.•The transient mode in an armchair graphene nanoribbon field-effect transistor results in undulations.•An extended Verilog-A model was built to include the quantum capacitance influence.
Graphene Nanoribbons (GNRs) are an emerging candidate to challenge the place of current semiconductor-based technology. In this work, we extend a model for Armchair Graphene Nanoribbons Field-Effect Transistor (AGNRFET) to the high-k dielectrics realm and examine the influences of quantum capacitance on its transient phenomena. The model is coded with Verilog-A and evaluated through SPICE simulations. We have considered a comparison between the extended model with and without the influence of the quantum capacitance. Simulation results show a realistic scenario where influence of the quantum capacitance significantly impacts the transient behaviour in circuit design. This proves the proposed model to be a valuable aid for the circuit design of future graphene-based applications. |
---|---|
AbstractList | •Quantum capacitance becomes dominant with high-k ultra-thin dielectrics.•Quantum capacitance in Nanoribbons is influenced by Van-Hove singularities.•The transient mode in an armchair graphene nanoribbon field-effect transistor results in undulations.•An extended Verilog-A model was built to include the quantum capacitance influence.
Graphene Nanoribbons (GNRs) are an emerging candidate to challenge the place of current semiconductor-based technology. In this work, we extend a model for Armchair Graphene Nanoribbons Field-Effect Transistor (AGNRFET) to the high-k dielectrics realm and examine the influences of quantum capacitance on its transient phenomena. The model is coded with Verilog-A and evaluated through SPICE simulations. We have considered a comparison between the extended model with and without the influence of the quantum capacitance. Simulation results show a realistic scenario where influence of the quantum capacitance significantly impacts the transient behaviour in circuit design. This proves the proposed model to be a valuable aid for the circuit design of future graphene-based applications. |
ArticleNumber | 108060 |
Author | Garzón, Esteban Golman, Roman Ngo, Ha-Duong Avnon, Asaf Teman, Adam Lanuzza, Marco |
Author_xml | – sequence: 1 givenname: Asaf surname: Avnon fullname: Avnon, Asaf email: asaf.avnon@biu.ac.il organization: Emerging Nanoscaled Integrated Circuits and Systems (EnICS) Labs, Faculty of Engineering, Bar-Ilan University, Ramat-Gan 5290002, Israel – sequence: 2 givenname: Roman surname: Golman fullname: Golman, Roman organization: Emerging Nanoscaled Integrated Circuits and Systems (EnICS) Labs, Faculty of Engineering, Bar-Ilan University, Ramat-Gan 5290002, Israel – sequence: 3 givenname: Esteban surname: Garzón fullname: Garzón, Esteban organization: Emerging Nanoscaled Integrated Circuits and Systems (EnICS) Labs, Faculty of Engineering, Bar-Ilan University, Ramat-Gan 5290002, Israel – sequence: 4 givenname: Ha-Duong surname: Ngo fullname: Ngo, Ha-Duong organization: IZM Fraunhofer Institute, Berlin, Germany – sequence: 5 givenname: Marco surname: Lanuzza fullname: Lanuzza, Marco organization: Department of Computer Engineering, Modelling, Electronics and Systems (DIMES), University of Calabria, Rende 87036, Italy – sequence: 6 givenname: Adam surname: Teman fullname: Teman, Adam organization: Emerging Nanoscaled Integrated Circuits and Systems (EnICS) Labs, Faculty of Engineering, Bar-Ilan University, Ramat-Gan 5290002, Israel |
BookMark | eNp9kNtKAzEQhoNUsK0-gHd5ga1JdrMHvJLiCQoi6HXITiZtajcpyVbx7U1pr70aBr7_Z-abkYkPHgm55WzBGa_vtouUcCGY4HlvWc0uyJS3TVeIiskJmTJWtgXP6BWZpbRljImasyn5eT9oPx4GCnqvwY3aA9Ixap8c-pHuN-jDgF5T5-nGrTfFFzUOdwhjdEB1HGCjXaTrqI8oUq99iK7vg6c2c6ZAazN8rkxjiHQIBnfX5NLqXcKb85yTz6fHj-VLsXp7fl0-rAoQVTcWTWME9ozpTral5axrpQWQmH8EEBIMcNtwgw2HTtatrVEKkLquoOpK2XflnPBTL8SQUkSr9tENOv4qztTRnNqqbE4dzamTuZy5P2UwH_btMKoE2QagcTH_okxw_6T_AG4Neys |
Cites_doi | 10.1038/s41586-019-1573-9 10.1038/nnano.2010.89 10.1016/j.apsusc.2020.145448 10.1063/1.99649 10.1016/S0167-9317(02)00977-2 10.1016/j.mee.2004.01.003 10.1007/s12043-013-0556-x 10.1063/1.2776887 10.1109/TDMR.2005.845236 10.1515/ntrev-2016-0099 10.1016/j.microrel.2017.06.056 10.1038/s41563-019-0359-7 10.1109/LED.2008.2005650 10.1109/TNANO.2015.2496158 10.1109/TED.2014.2302372 10.4028/www.scientific.net/SSP.156-158.499 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.sse.2021.108060 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2405 |
ExternalDocumentID | 10_1016_j_sse_2021_108060 S0038110121001052 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 6TJ 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABTAH ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFO ACGFS ACNCT ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMV HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY7 M24 M38 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. PZZ Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SMS SPC SPCBC SPD SPG SSM SSQ SST SSZ T5K TAE TN5 WH7 WUQ XFK XSW ZMT ZY4 ~G- AAXKI AAYXX ABDPE AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-c249t-77d2eb00a9583f10985fcc5e108cc25cdc1f71de71c9568f6e52c5a64c4935b93 |
ISSN | 0038-1101 |
IngestDate | Thu Nov 21 21:20:40 EST 2024 Fri Feb 23 02:44:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Graphene High-k dielectric Low Power 2D materials Quantum capacitance Armchair graphene nanoribbon field effect transistor (AGNRFET) Tunnel FETs |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c249t-77d2eb00a9583f10985fcc5e108cc25cdc1f71de71c9568f6e52c5a64c4935b93 |
ParticipantIDs | crossref_primary_10_1016_j_sse_2021_108060 elsevier_sciencedirect_doi_10_1016_j_sse_2021_108060 |
PublicationCentury | 2000 |
PublicationDate | October 2021 2021-10-00 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
PublicationDecade | 2020 |
PublicationTitle | Solid-state electronics |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Dragoman, Dragoman (b0005) 2021 Hlali, Hizem, Militaru, Kalboussi, Souifi (b0085) 2017; 75 Luryi (b0060) 1988; 52 Rodriguez, Vaziri, Smith, Frégonése, Ostling, Lemme, Rusu (b0050) 2014; 61 Ribes, Mitard, Denais, Bruyere, Monsieur, Parthasarathy, Vincent, Ghibaudo (b0095) 2005; 5 Gusev E, D’Emic C, Zafar S, Kumar A. Charge trapping and detrapping in hfo2 high-k gate stacks, Microelectr Eng 2004;72(1):273–277, proceedings of the 13th biennial conference on insulating films on semiconductors. doi:10.1016/j.mee.2004.01.003. Bandaru, Yamada, Narayanan, Hoefer (b0105) 2017; 6 Akinwande, Huyghebaert, Wang, Serna, Goossens, Li, Wong, Koppens (b0020) 2019; 573 Fahad, Srivastava, Sharma, Mayberry (b0045) 2016; 15 Fang, Konar, Xing, Jena (b0035) 2007; 91 Schroder (b0065) 2006 Lemme M. Current status of graphene transistors. In: Gettering and defect engineering in semiconductor technology xiii, Vol. 156 of solid state phenomena, Trans Tech Publications Ltd; 2010. p. 499–509. doi:10.4028/www.scientific.net/SSP.156-158.499. Zhang, Fang, Xing, Seabaugh, Jena (b0055) 2008; 29 Han, Kang, Lin, Han (b0070) 2003; 66 Fahad, Zhao, Srivastava, Peng (b0040) 2016 Neumaier, Pindl, Lemme (b0015) 2019; 18 Schwierz (b0025) 2010; 5 Kliros (b0080) 2010; 2010 Zhou, Ju, Liu, Li, Zhang (b0100) 2020; 510 Mao (b0075) 2013; 81 Warda M. Graphene field effect transistors: a review (2020). arXiv:2010.10382. Rodriguez (10.1016/j.sse.2021.108060_b0050) 2014; 61 Akinwande (10.1016/j.sse.2021.108060_b0020) 2019; 573 Fang (10.1016/j.sse.2021.108060_b0035) 2007; 91 Bandaru (10.1016/j.sse.2021.108060_b0105) 2017; 6 Hlali (10.1016/j.sse.2021.108060_b0085) 2017; 75 Schroder (10.1016/j.sse.2021.108060_b0065) 2006 Zhang (10.1016/j.sse.2021.108060_b0055) 2008; 29 Kliros (10.1016/j.sse.2021.108060_b0080) 2010; 2010 Ribes (10.1016/j.sse.2021.108060_b0095) 2005; 5 Mao (10.1016/j.sse.2021.108060_b0075) 2013; 81 Fahad (10.1016/j.sse.2021.108060_b0040) 2016 10.1016/j.sse.2021.108060_b0090 Fahad (10.1016/j.sse.2021.108060_b0045) 2016; 15 Zhou (10.1016/j.sse.2021.108060_b0100) 2020; 510 10.1016/j.sse.2021.108060_b0030 Dragoman (10.1016/j.sse.2021.108060_b0005) 2021 10.1016/j.sse.2021.108060_b0010 Neumaier (10.1016/j.sse.2021.108060_b0015) 2019; 18 Schwierz (10.1016/j.sse.2021.108060_b0025) 2010; 5 Luryi (10.1016/j.sse.2021.108060_b0060) 1988; 52 Han (10.1016/j.sse.2021.108060_b0070) 2003; 66 |
References_xml | – start-page: 1 year: 2016 end-page: 5 ident: b0040 article-title: Modeling of graphene nanoribbon tunnel field effect transistor in verilog-a for digital circuit design publication-title: 2016 IEEE international symposium on nanoelectronic and information systems (iNIS) contributor: fullname: Peng – volume: 52 start-page: 501 year: 1988 end-page: 503 ident: b0060 article-title: Quantum capacitance devices publication-title: Appl Phys Lett contributor: fullname: Luryi – year: 2021 ident: b0005 article-title: Atomic electronics contributor: fullname: Dragoman – volume: 75 start-page: 154 year: 2017 end-page: 161 ident: b0085 article-title: Effect of interface traps for ultra-thin high-k gate dielectric based mis devices on the capacitance-voltage characteristics publication-title: Microelectr Reliab contributor: fullname: Souifi – volume: 5 start-page: 487 year: 2010 end-page: 496 ident: b0025 article-title: Graphene transistors publication-title: Nat Nanotechnol contributor: fullname: Schwierz – volume: 573 start-page: 507 year: 2019 end-page: 518 ident: b0020 article-title: Graphene and two-dimensional materials for silicon technology publication-title: Nature contributor: fullname: Koppens – year: 2006 ident: b0065 article-title: Semiconductor material and device characterization contributor: fullname: Schroder – volume: 5 start-page: 5 year: 2005 end-page: 19 ident: b0095 article-title: Review on high-k dielectrics reliability issues publication-title: IEEE Trans Device Mater Reliab contributor: fullname: Ghibaudo – volume: 91 year: 2007 ident: b0035 article-title: Carrier statistics and quantum capacitance of graphene sheets and ribbons publication-title: Appl Phys Lett contributor: fullname: Jena – volume: 61 start-page: 1199 year: 2014 end-page: 1206 ident: b0050 article-title: A comprehensive graphene FET model for circuit design publication-title: IEEE Trans Electr Device contributor: fullname: Rusu – volume: 81 start-page: 309 year: 2013 end-page: 317 ident: b0075 article-title: Quantum capacitance of the armchair-edge graphene nanoribbon publication-title: Pramana contributor: fullname: Mao – volume: 29 start-page: 1344 year: 2008 end-page: 1346 ident: b0055 article-title: Graphene nanoribbon tunnel transistors publication-title: IEEE Electr Device Lett contributor: fullname: Jena – volume: 18 start-page: 525 year: 2019 end-page: 529 ident: b0015 article-title: Integrating graphene into semiconductor fabrication lines publication-title: Nat Mater contributor: fullname: Lemme – volume: 15 start-page: 39 year: 2016 end-page: 50 ident: b0045 article-title: Analytical current transport modeling of graphene nanoribbon tunnel field-effect transistors for digital circuit design publication-title: IEEE Trans Nanotechnol contributor: fullname: Mayberry – volume: 2010 start-page: 236 year: 2010 end-page: 239 ident: b0080 article-title: Modeling of carrier density and quantum capacitance in graphene nanoribbon FETs publication-title: Int Conf Microelectr contributor: fullname: Kliros – volume: 66 start-page: 643 year: 2003 end-page: 647 ident: b0070 article-title: Reliability characteristics of high-K gate dielectrics HfO2 in metal-oxide semiconductor capacitors publication-title: Microelectr Eng contributor: fullname: Han – volume: 510 year: 2020 ident: b0100 article-title: Effect of coexistence of defect and dopant on the quantum capacitance of graphene-based supercapacitors electrodes publication-title: Appl Surf Sci contributor: fullname: Zhang – volume: 6 start-page: 421 year: 2017 end-page: 433 ident: b0105 article-title: The role of defects and dimensionality in influencing the charge, capacitance, and energy storage of graphene and 2d materials publication-title: Nanotechnol Rev contributor: fullname: Hoefer – volume: 573 start-page: 507 issue: 7775 year: 2019 ident: 10.1016/j.sse.2021.108060_b0020 article-title: Graphene and two-dimensional materials for silicon technology publication-title: Nature doi: 10.1038/s41586-019-1573-9 contributor: fullname: Akinwande – volume: 5 start-page: 487 issue: 7 year: 2010 ident: 10.1016/j.sse.2021.108060_b0025 article-title: Graphene transistors publication-title: Nat Nanotechnol doi: 10.1038/nnano.2010.89 contributor: fullname: Schwierz – volume: 510 year: 2020 ident: 10.1016/j.sse.2021.108060_b0100 article-title: Effect of coexistence of defect and dopant on the quantum capacitance of graphene-based supercapacitors electrodes publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2020.145448 contributor: fullname: Zhou – volume: 2010 start-page: 236 year: 2010 ident: 10.1016/j.sse.2021.108060_b0080 article-title: Modeling of carrier density and quantum capacitance in graphene nanoribbon FETs publication-title: Int Conf Microelectr contributor: fullname: Kliros – volume: 52 start-page: 501 issue: 6 year: 1988 ident: 10.1016/j.sse.2021.108060_b0060 article-title: Quantum capacitance devices publication-title: Appl Phys Lett doi: 10.1063/1.99649 contributor: fullname: Luryi – volume: 66 start-page: 643 issue: 1 year: 2003 ident: 10.1016/j.sse.2021.108060_b0070 article-title: Reliability characteristics of high-K gate dielectrics HfO2 in metal-oxide semiconductor capacitors publication-title: Microelectr Eng doi: 10.1016/S0167-9317(02)00977-2 contributor: fullname: Han – start-page: 1 year: 2016 ident: 10.1016/j.sse.2021.108060_b0040 article-title: Modeling of graphene nanoribbon tunnel field effect transistor in verilog-a for digital circuit design contributor: fullname: Fahad – ident: 10.1016/j.sse.2021.108060_b0090 doi: 10.1016/j.mee.2004.01.003 – year: 2006 ident: 10.1016/j.sse.2021.108060_b0065 contributor: fullname: Schroder – volume: 81 start-page: 309 issue: 2 year: 2013 ident: 10.1016/j.sse.2021.108060_b0075 article-title: Quantum capacitance of the armchair-edge graphene nanoribbon publication-title: Pramana doi: 10.1007/s12043-013-0556-x contributor: fullname: Mao – year: 2021 ident: 10.1016/j.sse.2021.108060_b0005 contributor: fullname: Dragoman – volume: 91 issue: 9 year: 2007 ident: 10.1016/j.sse.2021.108060_b0035 article-title: Carrier statistics and quantum capacitance of graphene sheets and ribbons publication-title: Appl Phys Lett doi: 10.1063/1.2776887 contributor: fullname: Fang – ident: 10.1016/j.sse.2021.108060_b0030 – volume: 5 start-page: 5 issue: 1 year: 2005 ident: 10.1016/j.sse.2021.108060_b0095 article-title: Review on high-k dielectrics reliability issues publication-title: IEEE Trans Device Mater Reliab doi: 10.1109/TDMR.2005.845236 contributor: fullname: Ribes – volume: 6 start-page: 421 issue: 5 year: 2017 ident: 10.1016/j.sse.2021.108060_b0105 article-title: The role of defects and dimensionality in influencing the charge, capacitance, and energy storage of graphene and 2d materials publication-title: Nanotechnol Rev doi: 10.1515/ntrev-2016-0099 contributor: fullname: Bandaru – volume: 75 start-page: 154 year: 2017 ident: 10.1016/j.sse.2021.108060_b0085 article-title: Effect of interface traps for ultra-thin high-k gate dielectric based mis devices on the capacitance-voltage characteristics publication-title: Microelectr Reliab doi: 10.1016/j.microrel.2017.06.056 contributor: fullname: Hlali – volume: 18 start-page: 525 issue: 6 year: 2019 ident: 10.1016/j.sse.2021.108060_b0015 article-title: Integrating graphene into semiconductor fabrication lines publication-title: Nat Mater doi: 10.1038/s41563-019-0359-7 contributor: fullname: Neumaier – volume: 29 start-page: 1344 issue: 12 year: 2008 ident: 10.1016/j.sse.2021.108060_b0055 article-title: Graphene nanoribbon tunnel transistors publication-title: IEEE Electr Device Lett doi: 10.1109/LED.2008.2005650 contributor: fullname: Zhang – volume: 15 start-page: 39 issue: 1 year: 2016 ident: 10.1016/j.sse.2021.108060_b0045 article-title: Analytical current transport modeling of graphene nanoribbon tunnel field-effect transistors for digital circuit design publication-title: IEEE Trans Nanotechnol doi: 10.1109/TNANO.2015.2496158 contributor: fullname: Fahad – volume: 61 start-page: 1199 issue: 4 year: 2014 ident: 10.1016/j.sse.2021.108060_b0050 article-title: A comprehensive graphene FET model for circuit design publication-title: IEEE Trans Electr Device doi: 10.1109/TED.2014.2302372 contributor: fullname: Rodriguez – ident: 10.1016/j.sse.2021.108060_b0010 doi: 10.4028/www.scientific.net/SSP.156-158.499 |
SSID | ssj0002610 |
Score | 2.362359 |
Snippet | •Quantum capacitance becomes dominant with high-k ultra-thin dielectrics.•Quantum capacitance in Nanoribbons is influenced by Van-Hove singularities.•The... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 108060 |
SubjectTerms | 2D materials Armchair graphene nanoribbon field effect transistor (AGNRFET) Graphene High-k dielectric Low Power Quantum capacitance Tunnel FETs |
Title | Quantum capacitance transient phenomena in high-k dielectric armchair graphene nanoribbon field-effect transistor model |
URI | https://dx.doi.org/10.1016/j.sse.2021.108060 |
Volume | 184 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nj9MwELXK7gUOiE-xfMkHTkRGjRM3ybGwhcJhJegi7S1yHAeybBOUNiDx65mxnTisFgmQuERV2iTt-HVmPH5-Q8izZCHCdJ5mrCpEwZBHyOQc-5uIVPNE80oYtc_1Jjk5S49X8Wo2G6Qq_Ln_OtJwDsYad87-xWiPN4UT8BrGHI4w6nD8o3F_34Ot-m2gIAoqmPjjH3ePAQk3PgbI6ELNBYl1DpQqZl-Csra9cFC5tduqz7LuAqNjDW4waGTTdnVRICERyW7MEkDcLZFaaZvpTJPcTXtRl8xsVQp8m50xeV9-a1wj652sRv5Pe-FqsR_arUfsG9n9wLX8l5GtEwEmC__uySdT6F1Ldty3LgS7CgYPRy6cK6sNW2s8j8m4avDEkJvYz2nrndPELAeJX913fGUosFWJ8xe7Haqh8tCwKW3vgksK2xuzXIpCZ6FpGAoR_ZCD3wK3ebh8uzp7N4Z2mG46nU_73YZlckMYvPSgqxOdSfJyeovcdLMOurRwuU1murlDbky0KO-S7w44dAIcOgKHjsChdUMtcKgHDh2AQwfgUA8cOgUO9cChBjj3yMfXq9NXa-a6cjAFU_U9TMdKjg2nZCbSqArnWSoqpYSGX60UF6pUYZWEpU5ChVtRq4UWXAm5iFWcRaLIovvkAGCmHxCaaJSnE0JlVRQvojKNojThUmSSZ1pl8RF5Ppgw_2rFV_KBlXieg71ztHdu7X1E4sHIucsebVaYAyJ-f9nDf7vsEbnuofyYHOy7Xj8h13Zl_9SB5idpr5MX |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+capacitance+transient+phenomena+in+high-k+dielectric+armchair+graphene+nanoribbon+field-effect+transistor+model&rft.jtitle=Solid-state+electronics&rft.au=Avnon%2C+Asaf&rft.au=Golman%2C+Roman&rft.au=Garz%C3%B3n%2C+Esteban&rft.au=Ngo%2C+Ha-Duong&rft.date=2021-10-01&rft.pub=Elsevier+Ltd&rft.issn=0038-1101&rft.eissn=1879-2405&rft.volume=184&rft_id=info:doi/10.1016%2Fj.sse.2021.108060&rft.externalDocID=S0038110121001052 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-1101&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-1101&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-1101&client=summon |