Graphene oxide nanoribbons conjugated with 1, 2-distearoyl-sn-glycero-3 phosphoethanolamine-poly (ethylene glycol)-transferrin enhanced targeted delivery and cytotoxicity of raloxifene against breast cancer
The clinical utility of raloxifene (RLX), a selective estrogen receptor modulator (SERM), has been compromised by severe side effects and unfavorable drug properties. To address these, a transferrin (Tf) conjugated graphene oxide nanoribbon (GONR) platform was tried for RLX. The stability of GONRs i...
Saved in:
Published in: | International journal of biological macromolecules Vol. 278; no. Pt 2; p. 134772 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Netherlands
Elsevier B.V
01-10-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The clinical utility of raloxifene (RLX), a selective estrogen receptor modulator (SERM), has been compromised by severe side effects and unfavorable drug properties. To address these, a transferrin (Tf) conjugated graphene oxide nanoribbon (GONR) platform was tried for RLX. The stability of GONRs in biological media was improved by surface modification with 1, 2-Distearoyl-sn-glycero-3 phosphoethanolamine-Poly (ethylene glycol) (DSPE-PEG). The Tf molecule was covalently attached to DSPE-PEG (DPT) using EDC-NHS chemistry. The surface of GONR was then modified with DSPE-PEG (DP) or DPT and loaded with RLX (GDP-RLX and GDPT-RLX). The final formulations were characterized for drug loading and stability. The anticancer activities of pure RLX, GDP-RLX, and GDPT-RLX were evaluated and compared in all the in vitro and in vivo studies. In vitro cell line studies showed that GDPT-RLX have significantly high cytotoxicity, cellular uptake, apoptosis induction, G2/M phase arrest, anti-migration properties, and apoptotic protein expression, followed by GDP-RLX and RLX. Pharmacokinetics and tumor biodistribution were also found to be excellent with GDPT-RLX. The in vivo tumor therapy and tumor evaluation outcomes were also consistent with the in vitro data. The Tf conjugated GDPT-RLX represents a promising approach for targeted and sustained delivery of RLX with enhanced therapeutic efficacy. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0141-8130 1879-0003 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2024.134772 |