Polystyrene microplastics facilitate formation of refractory dissolved organic matter and reduce CO2 emissions
[Display omitted] Microplastics, as a type of anthropogenic pollution in aquatic ecosystems, affect the carbon cycle of organic matter. Although some studies have investigated the effects of microplastics on dissolved organic matter (DOM), the impact of alterations in the chemical properties of micr...
Saved in:
Published in: | Environment international Vol. 190; p. 108809 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
01-08-2024
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
Microplastics, as a type of anthropogenic pollution in aquatic ecosystems, affect the carbon cycle of organic matter. Although some studies have investigated the effects of microplastics on dissolved organic matter (DOM), the impact of alterations in the chemical properties of microplastics on refractory DOM and carbon release remains unclear. Here, we observed that microplastic treatments (e.g., polystyrene, PS) altered the composition and function of microbial community, notably increasing the abundance of microbial families involved in consuming easily degradable organic matter. During the process in which microbial community decomposed organic matter into DOM, PS underwent surface oxidation. The oxidized PS aggregated with DOM and microorganisms through electrostatic interactions and chemical bonds. Moreover, these interactions between oxidized PS and microbial community affect the utilization of organic matter, resulting in a significant decrease in CO2 emissions. Specifically, total CO2 emissions decreased by approximately 23.76 % with 0.1 mg/L PS treatment and by 44.97 % with 10 mg/L PS treatment compared to those in PS-free treatments over the entire reaction. These findings underscored the significance of the chemical properties of PS in the interactions among DOM and microorganisms, emphasizing the potential impact of PS microplastics on the carbon cycle in ecosystems. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0160-4120 1873-6750 1873-6750 |
DOI: | 10.1016/j.envint.2024.108809 |