Spatial and temporal control of intracellular free Ca2+ in chick sensory neurons
Digital imaging of fura-2 fluorescence and the voltage-clamp technique were combined to study cytoplasmic free Ca2+ concentration, [Ca]i, in neurons cultured from chick dorsal root ganglia. Depolarizing pulses raised [Ca]i to a new steady-state level which was achieved earlier in neurites than in th...
Saved in:
Published in: | Pflügers Archiv Vol. 424; no. 2; pp. 183 - 191 |
---|---|
Main Authors: | , , |
Format: | Conference Proceeding Journal Article |
Language: | English |
Published: |
Heidelberg
Springer
01-07-1993
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Digital imaging of fura-2 fluorescence and the voltage-clamp technique were combined to study cytoplasmic free Ca2+ concentration, [Ca]i, in neurons cultured from chick dorsal root ganglia. Depolarizing pulses raised [Ca]i to a new steady-state level which was achieved earlier in neurites than in the soma. The rise in [Ca]i during stimulated bursting or rhythmic activity was also faster in neurites. After stimulation [Ca]i recovered monoexponentially in the soma and biexponentially in neurites. Application of 50 mM KCl produced membrane depolarization and a concomitant increase of [Ca]i. During wash-out [Ca]i often declined to an intermediate steady-state level at which it stayed for several minutes. Thereafter the resting level of [Ca]i was quickly restored. [Ca]i recovery was delayed after treating the cell with 2 microM thapsigargin, an inhibitor of the Ca2+ pump of internal Ca2+ stores. Caffeine (10 mM) transiently increased [Ca]i. A second caffeine application produced smaller [Ca]i changes due to the prior depletion of Ca2+ stores, which could be replenished by brief exposure to KCl. Thapsigargin (2 microM) transiently increased [Ca]i both in the standard and Ca(2+)-free solution. [Ca]i transients due to caffeine and thapsigargin started in the cell interior, in contrast to [Ca]i changes evoked by membrane depolarization, which were noticed first at the cell edge. Caffeine and thapsigargin induced a transient inward current which persisted in the presence of 1 mM La3+ and in Ca(2+)-free solutions, but which was greatly diminished in Na(+)-free solutions. The effects of caffeine and thapsigargin were mutually exclusive both in the generation of [Ca]i transients and in the inward current induction. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0031-6768 1432-2013 |
DOI: | 10.1007/BF00374610 |