State of health estimation of power batteries based on multi-feature fusion models using stacking algorithm

The data-driven method is used widely to estimate the state of health (SOH) of the battery, but the selection of data features and the data training methods affect the estimation results greatly. With the stacking algorithm, this paper proposes a multi-feature fusion model to estimate battery SOH by...

Full description

Saved in:
Bibliographic Details
Published in:Energy (Oxford) Vol. 259; p. 124851
Main Authors: Liu, Gengfeng, Zhang, Xiangwen, Liu, Zhiming
Format: Journal Article
Language:English
Published: Elsevier Ltd 15-11-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The data-driven method is used widely to estimate the state of health (SOH) of the battery, but the selection of data features and the data training methods affect the estimation results greatly. With the stacking algorithm, this paper proposes a multi-feature fusion model to estimate battery SOH by fusing different feature parameters and combining support vector regression (SVR) and long short-term memory network (LSTM). The feature parameters were extracted only from the current change curve of the constant voltage charging stage. The support vector regression based on grid search (GS-SVR) was selected as the primary-learner, and the primary SVR models were constructed through 5-fold cross-validation for different feature parameters. The LSTM was selected as the secondary-learner. With the stacking algorithm, LSTM was used to fuse multiple primary SVR models to form an ensemble learner model to improve the performance of multi-feature fusion. The battery aging test data set and NASA battery test data set were used to evaluate the effectiveness. The results verified the validity and superiority of the proposed method. Compared with the existing estimation methods, root mean square error is reduced by at least 0.11, and mean absolute percentage error is reduced by at least 0.12%. •The input features are extracted from the current change curve during the charging process.•The Stacking algorithm is used to estimate the battery SOH.•LSTM are used to fuse multiple primary SVR models to form an ensemble learner model.•The battery aging test data set and NASA battery test data set are used to evaluate the effectiveness.
ISSN:0360-5442
DOI:10.1016/j.energy.2022.124851