Aneurysm sac shrinkage at 1 year after fenestrated-branched endovascular aortic repair of complex aortic aneurysms offers mid-term survival advantage

To investigate the impact of 1-year changes in aneurysm sac diameter on patient survival after fenestrated-branched endovascular aortic repair (FB-EVAR) of complex abdominal aortic aneurysms or thoracoabdominal aortic aneurysms. We reviewed the clinical data of patients enrolled in a prospective non...

Full description

Saved in:
Bibliographic Details
Published in:Journal of vascular surgery Vol. 80; no. 4; pp. 958 - 967.e3
Main Authors: Mesnard, Thomas, Sulzer, Titia A.L., Kanamori, Lucas Ruiter, Babocs, Dora, Vacirca, Andrea, Baghbani-Oskouei, Aidin, Savadi, Safa, Tenorio, Emanuel R., Mirza, Aleem, Saqib, Naveed, Mendes, Bernardo, Macedo, Thanilla, Verhagen, Hence J.M., Huang, Ying, Oderich, Gustavo S.
Format: Journal Article
Language:English
Published: United States Elsevier Inc 01-10-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To investigate the impact of 1-year changes in aneurysm sac diameter on patient survival after fenestrated-branched endovascular aortic repair (FB-EVAR) of complex abdominal aortic aneurysms or thoracoabdominal aortic aneurysms. We reviewed the clinical data of patients enrolled in a prospective nonrandomized study investigating FB-EVAR (2013-2022). Patients with sequential follow up computed tomography scans at baseline and 6 to 18 months after FB-EVAR were included in the analysis. Aneurysm sac diameter change was defined as the difference in maximum aortic diameter from baseline measurements obtained in centerline of flow. Patients were classified as those with sac shrinkage (≥5 mm) or failure to regress (<5 mm or expansion) according to sac diameter change. The primary end point was all-cause mortality. Secondary end points were aortic-related mortality (ARM), aortic aneurysm rupture (AAR), and aorta-related secondary intervention. There were 549 patients treated by FB-EVAR. Of these, 463 patients (71% male, mean age, 74 ± 8 years) with sequential computed tomography imaging were investigated. Aneurysm extent was thoracoabdominal aortic aneurysms in 328 patients (71%) and abdominal aortic aneurysms in 135 (29%). Sac shrinkage occurred in 270 patients (58%) and failure to regress in 193 patients (42%), including 19 patients (4%) with sac expansion at 1 year. Patients from both groups had similar cardiovascular risk factors, except for younger age among patients with sac shrinkage (73 ± 8 years vs 75 ± 8 years; P < .001). The median follow-up was 38 months (interquartile range, 18-51 months). The 5-year survival estimate was 69% ± 4.1% for the sac shrinkage group and 46% ± 6.2% for the failure to regress group. Survival estimates adjusted for confounders (age, chronic pulmonary obstructive disease, chronic kidney disease, congestive heart failure, and aneurysm extent) revealed a higher hazard of late mortality in patients with failure to regress (adjusted hazard ratio, 1.72; 95% confidence interval, 1.18-2.52; P = .005). The 5-year cumulative incidences of ARM (1.1% vs 3.1%; P = .30), AAR (0.6% vs 2.6%; P = .20), and aorta-related secondary intervention (17.0% ± 2.8% vs 19.0% ± 3.8%) were both comparable between the groups. Aneurysm sac shrinkage at 1 year is common after FB-EVAR and is associated with improved patient survival, whereas sac enlargement affects only a minority of patients. The low incidences of ARM and AAR indicate that failure to regress may serve as a surrogate marker for nonaortic-related death.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0741-5214
1097-6809
1097-6809
DOI:10.1016/j.jvs.2024.05.054