Effect of long-term simulated pulpal pressure on the bond strength and nanoleakage of resin-luting agents with different bonding strategies

This study evaluated the effects of simulated hydrostatic pulpal pressure (SPP) on the microtensile bond strength (μTBS) to dentin and nanoleakage patterns produced by self-adhesive luting agents after 12 months. Three self-adhesive luting agents (RelyX Unicem [UN], RelyX U100 [UC], and Clearfil SA...

Full description

Saved in:
Bibliographic Details
Published in:Operative dentistry Vol. 39; no. 5; pp. 508 - 520
Main Authors: de Alexandre, R S, Santana, V B, Kasaz, A C, Arrais, C A G, Rodrigues, J A, Reis, A F
Format: Journal Article
Language:English
Published: United States 01-09-2014
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study evaluated the effects of simulated hydrostatic pulpal pressure (SPP) on the microtensile bond strength (μTBS) to dentin and nanoleakage patterns produced by self-adhesive luting agents after 12 months. Three self-adhesive luting agents (RelyX Unicem [UN], RelyX U100 [UC], and Clearfil SA Luting [SA]) and three conventional luting agents (Rely X ARC [RX], Panavia F [PF], and a two-step self-etching adhesive system [Clearfil SE Bond] associated with Panavia F [PS]) were evaluated. One hundred twenty-three human molars were abraded to expose occlusal surfaces. Resin cements were used to lute cylindrical composite blocks to the teeth either subjected or not to SPP. Sixty specimens were subjected to 15 cm H2O of SPP for 24 hours before and 24 hours or 12 months after cementation procedures. Afterward, restored teeth were serially sectioned into beams with a cross-sectional area of 1 mm(2) at the bonded interface and were tested in tension (cross-head speed of 1 mm/min). Failure mode was determined using scanning electron microscopy (SEM). Data were statistically analyzed by three-way analysis of variance and post hoc Tukey test (p=0.05). Two additional teeth in each group were serially sectioned into 0.9-mm-thick slabs, which were submitted to a nanoleakage protocol with AgNO3 and analyzed with scanning and transmission electron microscopes. The μTBS values of the etch-and-rinse group (RX) were negatively influenced by SPP and long-term water storage with SPP. After 12 months, UC and SA presented premature failures in all specimens when submitted to SPP. SPP increased silver deposition in most groups in both evaluation times. The hydrostatic pulpal pressure effect was material dependent. The storage time without SPP did not affect bond strength. However, long-term SPP influenced the performance of the etch-and-rinse and self-adhesive cements regarding μTBS and nanoleakage pattern, except to UN.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0361-7734
1559-2863
DOI:10.2341/13-078