AN EMBEDDING THEOREM

We consider a weighted space W 1 (2) (ℝ,q) of Sobolev type: ${\mathrm{W}}_{1}^{\left(2\right)}(\mathrm{\mathbb{R}},\mathrm{q})=\{\mathrm{y}\in \mathrm{A}{\mathrm{C}}_{\mathrm{l}\mathrm{o}\mathrm{c}}^{\left(1\right)}(\mathrm{\mathbb{R}}):\Vert \mathrm{y}\prime \prime {\Vert }_{{\mathrm{L}}_{1}\left(\...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the American Mathematical Society Vol. 141; no. 9; pp. 3213 - 3221
Main Authors: CHERNYAVSKAYA, N. A., SHUSTER, L. A.
Format: Journal Article
Language:English
Published: American Mathematical Society 01-09-2013
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider a weighted space W 1 (2) (ℝ,q) of Sobolev type: ${\mathrm{W}}_{1}^{\left(2\right)}(\mathrm{\mathbb{R}},\mathrm{q})=\{\mathrm{y}\in \mathrm{A}{\mathrm{C}}_{\mathrm{l}\mathrm{o}\mathrm{c}}^{\left(1\right)}(\mathrm{\mathbb{R}}):\Vert \mathrm{y}\prime \prime {\Vert }_{{\mathrm{L}}_{1}\left(\mathrm{\mathbb{R}}\right)}+\Vert \mathrm{q}\mathrm{y}{\Vert }_{{\mathrm{L}}_{1}\left(\mathrm{\mathbb{R}}\right)}<\mathrm{\infty }\}$ , where 0 ≤ q ∈ $0\le \mathrm{q}\in {\mathrm{L}}_{1}^{\mathrm{l}\mathrm{o}\mathrm{c}}\left(\mathrm{\mathbb{R}}\right)$ and $\Vert \mathrm{y}{\Vert }_{{\mathrm{W}}_{1}^{\left(2\right)}(\mathrm{\mathbb{R}},\mathrm{q})}={\Vert \mathrm{y}\prime \prime \Vert }_{{\mathrm{L}}_{1}\left(\mathrm{\mathbb{R}}\right)}+\Vert \mathrm{q}\mathrm{y}{\Vert }_{{\mathrm{L}}_{1}\left(\mathrm{\mathbb{R}}\right)}$ . We obtain a precise condition which guarantees the embedding ${\mathrm{W}}_{1}^{\left(2\right)}(\mathrm{\mathbb{R}},\mathrm{q})\hookrightarrow {\mathrm{L}}_{\mathrm{p}}\left(\mathrm{\mathbb{R}}\right), \ \mathrm{p}\in [1,\mathrm{\infty })$ .
ISSN:0002-9939
1088-6826
DOI:10.1090/S0002-9939-2013-11805-8